	1

CHECKPOINTING
using

DMTCP and BLCR

with

RAxML
A report on the Work done/IN Progress
To Evaluate NON-intrusive checkpointing softwares
for applications like RAxML
Table of Contents

3INTRODUCTION:

OVERVIEW of DMTCP:
3
OVERVIEW of BLCR:
3
CHECKPOINTING IN THE CLUSTER:
4
DMTCP IN ICE:
4
INITIAL SETUP:
4
GROWTH OF MEMORY AND SIZE WITH TIME:
4
EFFECT OF COMPILER OPTIMIZATIONS:
5
FIXING THE RANDOMNESS OF RAXML:
5
First level of Crashes and Restarts:
5
SECOND level of Crashes and Restarts:
6
CHECKPOINTING IN THE VM:
8
Stress testing of BLCR with RAxML on a VM:
8
Stress testing of DMTCP with RAXML ON a VM:
8
Sampling of DMTCP and BLCR:
10
Work IN PROGRESS:
12
Latest version of DMTCP on Saguaro and ICE Cluster:
12
TESTS WITH LONG RUNNING JOBS:
12
Output Analysis of RAxML when used in conjunction with DMTCP and BLCR:
12
APPENDIX A:
14
Sample.py
14
run_sampling_blcr.sh
15
run_sampling.sh
16
run_check_blcr.sh
17
run_sampling_dmtcp.sh
17
run_single_res.sh
18
run_double_res.sh
20
check.csh
21
restart.csh
22

INTRODUCTION:

The following report describes the experiences and observations in using two checkpointing software BLCR and DMTCP, with RAxML, software used for inference of large phylogenetic trees. This report is detailed enough, with scripts and error messages and some trivial info included, so that the report is self contained for anyone to simulate the experiments.

OVERVIEW of DMTCP:

DMTCP (Distributed Multithreaded Checkpointing) is a tool to transparently checkpoint the state of an arbitrary group of programs spread across many machines and connected by sockets. It works at the application level and does not modify the user's program or the operating system.

DMTCP works by having a coordinator for the set of processes to be checkpointed. When the coordinator is started, the checkpointing interval is defined. The process to be checkpointed should know the host and the port where the coordinator is running.

DMTCP maintains only the most recently successful checkpoint. The authors have indicated that in the future releases, they will be giving options to maintain multiple checkpoints.

Another useful feature provided in DMTCP is that, if the coordinator's address/location is not mentioned and a process is started via DMTCP, then a coordinator is started in the localhost automatically, and maintained till the process reaches completion.

OVERVIEW of BLCR:

BLCR is a non-intrusive checkpointing library, implemented as a kernel module. BLCR can checkpoint/restart groups of processes (such as shell scripts and their sub processes), together with the IPC mechanisms that connect them.

The limitations of BLCR, is that, it does not checkpoint open sockets and system V IPC objects.

Also, using BLCR in a cluster poses a big challenge, as the kernel module needs to be loaded in all the nodes of the cluster.

BLCR uses the same process id, for all the restarts of the initial process. For some reason, if the process id of the initially running process is not available, then BLCR cannot restart the checkpointed process. This may never happen, but still it’s worth a mention.

CHECKPOINTING IN THE CLUSTER:
DMTCP IN ICE:

INITIAL SETUP:
Initial sets of experiments were carried out with DMTCP in the ICE cluster, an HPC cluster located at the University of Arizona. There were a few initial hiccups related to the DMTCP coordinator. For example, when the PBS job was started in interactive mode, this posed problems in collecting individual statistics for a job started in interactive mode. Upon further investigation, it was found that the coordinator need not be started at all, and when a checkpoint is executed, the dmtcp_checkpoint command automatically starts the coordinator. This is a very useful feature, as the coordinator will be started in the same host, where the checkpoint job will run. This solves a lot of issues in a cluster, as when the coordinator is submitted as a separate batch job, it is not obvious - which of the nodes of the cluster will host this coordinator job.
In another example, DMTCP, when submitted without using PBS, would not restart from a successfully check-pointed file. After many experimental runs, it was found that, RAxML, when compiled with ICC and optimization level O2, had loop optimizations that created problems for the checkpointing software. When optimization level was changed to O1, the restart successfully executed.

The next hurdle was in trying to make DMTCP restart work successfully when the job is submitted through PBS. When the restart job is submitted via PBS, DMTCP complained that it was not able to restore a few files, which are related to ERR and STDOUT, connected to the original process. After researching ways to resolve the checkpointing of the .OU and .ERR files in the temporary spool directory, we mailed the DMTCP developers regarding the error, and they suggested to modifying RAxML to prevent outputting those files, but they were also ready to provide a fix, to bypass a few files, if nothing else worked.

As a work-around the following PBS option was discovered:
#PBS -k eo
It prevented the PBS from maintaining the ERR and OUT files in the spool directory and checkpoint-restart executed successfully with RAxML and PBS.

GROWTH OF MEMORY AND SIZE WITH TIME:

In order to observe the checkpointed files, their sizes, the growth in the sizes, and the temp files that were created, a script was constructed, which observed the state of the checkpointed files at regular intervals until the job completed. A sample output is attached as shown

	CPU Time
	Memory
	VMemory
	WallTime
	Size of Checkpoint file

	00:03:54
	52212kb
	90376kb
	00:01:01
	8.4M

	00:05:53
	56828kb
	94996kb
	00:01:31
	8.7M

	00:11:25
	56828kb
	95000kb
	00:02:55
	8.9M + 2.8M temp file

	00:14:42
	57440kb
	95000kb
	00:03:45
	9.0M

	00:18:38
	57444kb
	95000kb
	00:04:45
	9.0M

	
	
	
	
	

One intriguing observation was that a few times, the restart failed with segmentation faults, or sometimes hung and got aborted.

EFFECT OF COMPILER OPTIMIZATIONS:

To determine the stability of using DMTCP when used with RAxML, and the effect of compiling RAxML with different compiler options, in order to find the best circumstances, a few compiler options were modified and the following was observed:

ICC O2 - Restart failed in all cases

ICC O0 - 2 Restarts failed with SegFaults and hang-ups

GCC O1, O0 - Restarts failed

ICC O1 - Found to be the most stable option that was tried

FIXING THE RANDOMNESS OF RAXML:
RAxML used a lot of random numbers in the code. In order to make sure that every run was identical to the previous one, we fixed the randomness in RAxML by inserting constant seeds in the code, so that the same sequence of random numbers were generated at every run.
First level of Crashes and Restarts:

Another round of experiments were conducted, which submitted a job, checkpointed it, waited for a few minutes, killed the job, restarted the job, and determined if the job completed successfully.

A script was written to do this in a loop, to observe the success-failure ratio, and the following was observed. Each job took around 10 - 15 minutes to complete

	No of Runs
	No. Of Failures/Seg Faults

	20
	3

	50
	10

	20
	4

	10
	0

	20
	5

First level of crashing and restarting - Errors: Out of the last sample of 20 runs -- when restarting a crashed process for the first time, the following errors were observed:

1) mtcp_restart: saved stack rsourcelimit: soft_lim:0x2000000, hard_lim:0x2000000, Program received signal SIGSEGV, Segmentation fault. 0x00000000004202fa in dmtcp::StdioConnection::restore (this=0x0, fds=@0x0) at connection.cpp:1008

2)#0 0x00000000004202fa in dmtcp::StdioConnection::restore (this=0x0, fds=@0x0) at connection.cpp:1008

#1 0x0000000000000000 in ?? ()

SECOND level of Crashes and Restarts:

The second level of crashes and restarts were executed, to make sure that the results obtained in the first level of crashes and restarts, were reflected in these tests. The next experiment conducted was, to submit a job, checkpoint it, wait for a few minutes, kill the job, restart the job, and wait for a few minutes, and then kill it again, then restart it, and see if it completed successfully.

A script was written to do this in a loop, to observe the success-failure ratio, and the following was observed. Each job took around 10 - 15 minutes to complete

	No of Runs
	No of Failures

	20
	4

	
	

Some of the errors that were observed were

1) Program received signal SIGABRT, Aborted.

Cannot remove breakpoints because program is no longer writable.

It might be running in another process.

Further execution is probably impossible.

0x00002b4065878b95 in ?? ()

2) #2 0x0000000000444471 in std::vector<int, dmtcp::DmtcpAlloc<int> >::operator= (this=Cannot access memory at address 0xffffffffffffff98

) at /usr/include/c++/4.1.2/bits/vector.tcc:152

Few conclusions from the observations:

1. In a PBS environment, where we have run DMTCP and RAxML, the behavior of DMTCP is not that predictable, as the average failure % is around 20

2. The developers of DMTCP have already been contacted, and they are open for any suggestions, and discussions on the errors. We will send them a detailed mail, with various errors that were observed.

3. Without using PBS, DMTCP needs to be evaluated again, to find, if it is perfect for use in a non-clustered environment.

CHECKPOINTING IN THE VM:
Stress testing of BLCR with RAxML on a VM:

Installing BLCR was easy, following the steps as per the installation guide. Testing BLCR, using RAxML, was also straightforward without any issues.

BLCR works differently from DMTCP in that there is no separate coordinator process. To enable BLCR checkpointing, RAxML was required to be linked with the BLCR libraries. When checkpointing has to be done, the process id of RAxML is fed to the BLCR checkpoint program, and the RAxML job is checkpointed. Similarly when restart has to be done, the BLCR restart program is started with the checkpointed file, and in contrast to DMTCP, the restarted process, continues as a standalone original RAxML job with the same process id.
Stress testing was conducted, in which, RAxML job was started, and checkpointed every 1 minute and killed every 90 seconds, and restarted again in a loop. This was conducted for 20 runs of the RAxML job, and everything went perfect.

Stress testing of DMTCP with RAXML ON a VM:

Stress testing of DMTCP, was more tricky.

The first hurdle that was encountered is to find the exact set of processes that need to be killed, before a restart. DMTCP involves running three processes, two at a time.

In the first instance, the RAxML job runs along with the DMTCP coordinator. When this process gets killed, then during the next restart, the DMTCP coordinator runs, along with a restart process (which ideally encompasses the RAxML job).

Under normal scenario, killing either one of the two processes suffice, as the coordinator starts in a mode, where it dies if the job it was started upon dies and in the case that, the coordinator is killed first, it kills the RAxML job before it dies.

First sets of stress tests were conducted in the VM where BLCR was installed as a kernel module. Killing the DMTCP coordinator alone, resulted in successful runs of the RAxML job for the first 5 - 8 runs, but in the latter runs, the jobs started taking longer times to restart, and sometimes, the job hung.

Three kinds of anomalies were observed:

a) The restarted processes were sometimes never killed, even though the DMTCP coordinator was killed. These processes got accumulated as the number of restarts started increasing.

b) For some unexplainable reason, after some random number of iterations > 5, the job comes to a standstill, with the following info message being displayed by the coordinator continuously.

[4996] TRACE at dmtcpworker.cpp:462 in restoreSockets; REASON='restoreSockets begin'

[4996] TRACE at dmtcpworker.cpp:472 in restoreSockets; REASON='open listen socket attempt'

 theRestorPort = 9778

[4996] TRACE at dmtcpworker.cpp:472 in restoreSockets; REASON='open listen socket attempt'

 theRestorPort = 9779

[4996] TRACE at dmtcpworker.cpp:472 in restoreSockets; REASON='open listen socket attempt'

c) Another typical informational error message that was encountered is

[15412] WARNING at jsocket.cpp:244 in writeAll; REASON='JWARNING(cnt > 0) failed'

 cnt = -1

 len = 104

 (strerror((*__errno_location ()))) = Broken pipe

Message: JSocket read failure

Second sets of stress tests were conducted in the same VM where BLCR was installed. This time, both the coordinator and the RAxML job were killed. The results obtained during these tests were more consistent, and the above-mentioned errors were not seen.

Third sets of tests were conducted in a different VM where BLCR was not installed. In this new VM, it was observed that killing the coordinator alone, which was causing problems in the first VM, didn’t cause any issues. Both the set of tests yielded consistent results.

This leads to the observation that BLCR is more stable. DMTCP sometimes produces stale connections / sockets, which leads to a few issues, depending on which processes are killed during the tests. Whereas DMTCP has automatic periodic checkpointing capability, we need to run a separate script to manually checkpoint at periodic intervals with BLCR.

The scripts used for BLCR and DMTCP are attached in the appendix of this document.

Sampling of DMTCP and BLCR:

A python script was written, to start separate threads, one to sample, one to checkpoint and the third one to run the RAxML job.

This was done to observe in detail, the resource usage of DMTCP and BLCR processes as they are used in conjunction with RAxML.
The following is a graph that shows DMTCP and BLCR checkpoint file sizes growing with time.

Top of Form

 MACROBUTTON HTMLDirect [image: image1.png]Memory (KB)

Bottom of Form

[image: image2.png]50000000
45000000
40000000
35000000
30000000
25000000
20000000
15000000
10000000
5000000
0

Checkpoint Size -
BLCR

Checkpoint Size -
DMTCP

13 5 7 91113151719 21

Time(Mins)

Top of Form

 MACROBUTTON HTMLDirect [image: image3.png]Time (Minutes) --

Bottom of Form

This clearly shows that

a) The checkpoint file sizes of DMTCP and BLCR do not increase much as time progresses

b) BLCR checkpoint file consumes much more space than what DMTCP takes
The following graph shows, the Memory occupied by the RAxML process when run along with BLCR and DMTCP
Top of Form

 MACROBUTTON HTMLDirect [image: image4.png]Memory (KB)

Bottom of Form

[image: image5.png]160000

140000

120000

100000

80000

60000

40000

20000

0

'ime(Mins)
emory- DMTCP(KB)
==Memory- BLCR(KB)

12345678 9101112131415161718192021222324

Top of Form

 MACROBUTTON HTMLDirect [image: image6.png]Time (Minutes)

Bottom of Form

Work IN PROGRESS:

Latest version of DMTCP on Saguaro and ICE Cluster:

We ran the latest version of DMTCP released in the Saguaro cluster, and as suggested by DMTCP developers, we compiled the software without debugging support and used RAxML code, with fixes for randomness removed.

This was an error free run for both single and double restart tests. All the tests passed without any issues.

Based on the above result, we ran the latest version of DMTCP on the ICE cluster again. This also produced error free results without any issues.
TESTS WITH LONG RUNNING JOBS:

A few more tests needs to be carried out, as the latest version of DMTCP looks very stable. These tests will be carried out on a long running RAxML job (typically more than a day) and stress tested to see, if DMTCP is a feasible option in the cluster and in the VM and if BLCR is a feasible option in the VM.
Output Analysis of RAxML when used in conjunction with DMTCP and BLCR:

After fixing the randomness, all the output files produced by RAxML for similar invocations are supposed to be identical.
From what has been observed so far, for jobs that span very few minutes, killing and restarting it has not produced any significant difference in the output.

But for jobs that span around an hour, there are few differences in the output that has been observed, both in DMTCP and BLCR.

To be more precise,

the following files are identical:

RAxML_besttree

the following files have small differences in the output:

RAxML_bipartitions

RAxML_bipartitionsBranchLabels

RAxML_bootstrap
We are working with the developer of RAxML to sort out these issues.

APPENDIX A:
Sample.py

This python program creates a sampling thread to sample the running RAxML process with checkpointing. It also creates a checkpointing thread to checkpoin the running process at regular intervals. A third thread is created to execute the script that runs RAxML process. Once the third thread, which is the RAxML process finishes, the checkpointing thread and the sampling thread are killed.
#!/usr/bin/python

import os

import time

import sys

from threading import Thread

from subprocess import Popen

class dmtcp_exec(Thread):

 def __init__(self, exe):

 Thread.__init__(self)

 if exe is None:

 print "dmtcp_exec thread creation issues, no exe entered"

 else:

 print "exe to be executed is ", exe

 self.prog = exe

 #os.system("/home/rufus/run_sing_dmtcp.sh 556678");

 def run(self):

 print "Thread dmtcp_exec started"

 print self.prog

 os.system(self.prog);

 #p = Popen(self.prog)

class sampling(Thread):

 def __init__(self, secs, ps):

 Thread.__init__(self)

 self.secs = secs

 self.ps = ps

 self.killed = False

 def run(self):

 print "Thread sampling started", str(self.ps)

 while 1:

 if self.killed == True:

 break

 time.sleep(self.secs)

 os.system(self.ps);

 #p = Popen(self.ps)

 def kill(self):

 self.killed = True

print sys.argv[1]

t1 = dmtcp_exec("/home/rufus/run_sampling_blcr.sh " + str(sys.argv[1]))

t2 = sampling(300,"/home/rufus/run_sampling1.sh")

t3= sampling(180,"/home/rufus/run_check_blcr.sh")

t1.start()

t2.start()

t3.start()

print "Before Joining"

t1.join()

print "after joining"

t2.kill()

t3.kill()

print "after T2 exits"

run_sampling_blcr.sh

This script is used to start BLCR, then after some time, kill it and restart it, until the job completes. The whole process is repeated in a loop. Killing and Restarting is done infinitely and it ends, when killing fails, as the original process would have completed.
#!/bin/bash

date

if [$# != 1]

then

 echo "Supply an integer argument for Tname .."

 exit 1

fi

mv "/home/rufus/blcr-0.8.2/run/op.csv" "/home/rufus/blcr-0.8.2/run/op-`date`.csv"

i=-1

while [$i -le -1]

do

 i=`expr $i + 1`

 echo " ---- RUN $i ----`date` " >> "/home/rufus/blcr-0.8.2/run/op.csv"

 echo "Memory, Elapsed Time, CPU Time, Chkpt-file-size" >> "/home/rufus/blcr-0.8.2/run/op.csv"

 echo "Starting $i ----------------"

 env LD_PRELOAD=/usr/local/lib/libcr_run.so.0 /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 2 -s /home/rufus/raxml/RAxML-src/150_SC -f a -x 12345 -N 100 -p 12345 -m GTRCAT -n TLONG`expr $1 + $i` 1> /dev/null &

 pid=`pidof /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI`

 echo "PID is $pid ----"

 j=0

 while [$j -le 100]

 do

 echo " Looping $i --- $j -----------"

 sleep 240

 echo " After Sleeping 600"

 kill -9 $pid

 if [$? != 0]

 then

 echo " " >> "/home/rufus/blcr-0.8.2/run/op.csv"

 echo "Job Completed $j ------------------------------"

 break

 fi

 echo "Killed $pid"

 /home/rufus/blcr-0.8.2/builddir/bin/cr_restart context."$pid" &

 echo "Started restarting .."

 j=`expr $j + 1`

 done

done

run_sampling.sh

This is a small sampling script to get the information for the process that is being sampled. The sampling thread will call this, whenever it wakes up. The collected information is written to a XL sheet.
#!/bin/bash

 #echo "Memory, SwapSpaceReqired, Time, Chkpt-file-size" >> "/home/rufus/dmtcp/dmtcp_1.03-r302/run/op.csv"

pid1=`pidof /home/rufus/dmtcp/dmtcp_1.03-r302/dmtcp/src/../../mtcp/mtcp_restart`

if [$? != 0]

then

 pid1=`pidof /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI`

fi

a=`ps -o vsz,size,time -p "$pid1" --no-headers | awk '{print $1 ", " $2 ", " $3}'`

size=`ls -lt /home/rufus/dmtcp/dmtcp_1.03-r302/run/*.dmtcp |head -1| awk '{print $5}'`

echo "$a , $size" >> "/home/rufus/dmtcp/dmtcp_1.03-r302/run/op.csv"

run_check_blcr.sh

pid=`pidof /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI`

echo "PID to be checkpointed is $pid"

/home/rufus/blcr-0.8.2/builddir/bin/cr_checkpoint $pid

run_sampling_dmtcp.sh

This is a sampling script for dmtcp, used to run the RAxML by killing it and restarting it at regular intervals, until the RAxML job finishes

#!/bin/bash

date

if [$# != 1]

then

 echo "Supply an integer argument for Tname .."

 exit 1

fi

export DMTCP_CHECKPOINT_INTERVAL=180

export DMTCP_CHECKPOINT_DIR=/home/rufus/dmtcp/dmtcp_1.04-r315/run

export PATH=$PATH:/home/rufus/dmtcp/dmtcp_1.04-r315/bin

mv "/home/rufus/dmtcp/dmtcp_1.04-r315/run/op.csv" "/home/rufus/dmtcp/dmtcp_1.04-r315/run/op-`date`.csv"

i=-1

while [$i -le -1]

do

 i=`expr $i + 1`

 echo "Starting $i --"

 /home/rufus/dmtcp/dmtcp_1.04-r315/bin/dmtcp_checkpoint /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 2 -s /home/rufus/raxml/RAxML-src/150_SC -f a -x 12345 -N 100 -p 12345 -m GTRCAT -n TLONG`expr $1 + $i` &> /dev/null &

 echo " ---- RUN $i ----`date` " >> "/home/rufus/dmtcp/dmtcp_1.04-r315/run/op.csv"

 echo "Memory, Elapsed Time, Cumulative CPU Time, Chkpt-file-size" >> "/home/rufus/dmtcp/dmtcp_1.04-r315/run/op.csv"

 j=0

 while [$j -le 100]

 do

 sleep 240

 echo " After Sleeping 600"

 pid=`pidof /home/rufus/dmtcp/dmtcp_1.04-r315/dmtcp/src/dmtcp_coordinator`

 pid1=`pidof /home/rufus/dmtcp/dmtcp_1.04-r315/dmtcp/src/../../mtcp/mtcp_restart`

 if [$? != 0]

 then

 pid1=`pidof /home/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI`

 fi

 echo "PID1 is $pid1-----------------"

 echo " --------------------------------------Looping $i --- $j -----------PID IS $pid ---"

 kill -9 $pid

 if [$? != 0]

 then

 #kill -9 $pid1

 echo " " >> "/home/rufus/dmtcp/dmtcp_1.04-r315/run/op.csv"

 echo "Job Completed $j --"

 break

 fi

 echo "Killed $pid"

 kill -9 $pid1

 echo "Killed $pid1"

 /home/rufus/dmtcp/dmtcp_1.04-r315/run/dmtcp_restart_script.sh &

 echo "Started restarting .."

 j=`expr $j + 1`

 done

done

 run_single_res.sh

This is a single kill and restart script, which kills the running process once and restarts it to make sure that checkpointing worked without any issues. This script is used in the PBS environment in the cluster. The restart script that is created by dmtcp, doesnot work directly, so we need to modify it to include path information for the script to work.

#!/bin/bash

date

if [$# != 1]

then

 echo "Supply an integer argument for Tname .."

 exit 1

fi

i=0

while [$i -le 20]

do

 i=`expr $i + 1`

 qsub -v name=T`expr $1 + $i` ./temp/check.csh

 while [`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid` == ""]

 do

 echo "Jobid not yet written by check.csh"

 sleep 10

 done

 echo "About to sleep $i for `expr 180 + $i % 3 * 60` seconds"

 sleep `expr 120 + $i % 3 * 60`

 jid=`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid`

 echo "" > /scratch/rufus/dmtcp_1.04-r315/run/jobid

 echo "Job id for check is $jid"

 qsig -s SIGKILL $jid

 echo "Killed $jid"

 chmod +x /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 sed -ie "s/dmtcp_restart/\/scratch\/rufus\/dmtcp_1.04-r315\/bin\/dmtcp_restart/g" /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 qsub /scratch/rufus/dmtcp_1.04-r315/run/temp/restart.csh

 echo "submitted Restart ..."

 while [`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid` == ""]

 do

 echo "Job id not yet written by restart.csh"

 sleep 10

 done

 jid=`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid`

 echo "" > /scratch/rufus/dmtcp_1.04-r315/run/jobid

 echo "Job id for restart $jid"

 while [1]

 do

 t=`tracejob $jid`

 t1=`echo $t | grep Exit_status`

 if ["$t1" != ""]

 then

 echo "Exit status found .."

 echo "--------------------"

 break

 else

 echo "Exit status not found ..."

 sleep 120

 fi

 done

done

run_double_res.sh

This is a double kill and restart script, which kills the running process once and restarts it, and then sleeps for some time before killing it and restarting it again to make sure that checkpointing works without any issues. This script is used in the PBS environment in the cluster.
#!/bin/bash

date

if [$# != 1]

then

 echo "Supply an integer argument for Tname .."

 exit 1

fi

i=0

while [$i -le 20]

do

 i=`expr $i + 1`

 qsub -v name=T`expr $1 + $i` /scratch/rufus/dmtcp_1.04-r315/run/temp/check.csh

 while [`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid` == ""]

 do

 echo "Jobid not yet written by check.csh"

 sleep 10

 done

 echo "About to sleep $i for `expr 180 + $i % 3 * 60` seconds"

 sleep `expr 120 + $i % 3 * 60`

 jid=`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid`

 echo "" > /scratch/rufus/dmtcp_1.04-r315/run/jobid

 echo "Job id for check is $jid"

 qsig -s SIGKILL $jid

 echo "Killed $jid"

 chmod +x /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 sed -ie "s/dmtcp_restart/\/scratch\/rufus\/dmtcp_1.04-r315\/bin\/dmtcp_restart/g" /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 qsub /scratch/rufus/dmtcp_1.04-r315/run/temp/restart.csh

 echo "submitted Restart ..."

 while [`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid` == ""]

 do

 echo "Job id not yet written by restart.csh"

 sleep 10

 done

 echo "About to sleep for 3 minutes"

 sleep 180

 jid=`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid`

 echo "" > /scratch/rufus/dmtcp_1.04-r315/run/jobid

 echo "Job id for restart $jid"

 qsig -s SIGKILL $jid

 echo "Killed $jid Second level ..."

 chmod +x /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 sed -ie "s/dmtcp_restart/\/scratch\/rufus\/dmtcp_1.04-r315\/bin\/dmtcp_restart/g" /scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

 qsub /scratch/rufus/dmtcp_1.04-r315/run/temp/restart.csh

 echo "submitted Restart ... Second level"

 while [`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid` == ""]

 do

 echo "Job id not yet written by restart.csh"

 sleep 10

 done

 jid=`cat /scratch/rufus/dmtcp_1.04-r315/run/jobid`

 echo "" > /scratch/rufus/dmtcp_1.04-r315/run/jobid

 echo "Job id for restart $jid Second level....."

check.csh

This is the C shell PBS script used in the cluster for submitting the Checkpointing job

#!/bin/csh

Set the job name

#PBS -N T555

Request email when job begins and ends

#PBS -m bea

Specify email address to use for notification.

#PBS -M rufus@email.arizona.edu

Specify the PI group found with va command

#PBS -W group_list=nirav

Set the queue to submit this job.

#PBS -q default

Set the number of cpus up to the maximum of 8 for ICE cluster

#PBS -l select=1:ncpus=4

Specify up to a maximum of 1600 hours total cpu time for the job

#PBS -l cput=192:0:0

Specify up to a maximum of 240 hours walltime for the job

#PBS -l walltime=24:0:0

#PBS -e /scratch/rufus/dmtcp_1.04-r315/run/efile

#PBS -o /scratch/rufus/dmtcp_1.04-r315/run/ofile

#PBS -k eo

setenv OMP_NUM_THREADS 4

unlimit

setenv DMTCP_CHECKPOINT_INTERVAL 60

#setenv DMTCP_PORT 7779

setenv DMTCP_CHECKPOINT_DIR /scratch/rufus/dmtcp_1.04-r315/run

#setenv DMTCP_HOST r1i1n12

echo $PBS_JOBID > /scratch/rufus/dmtcp_1.04-r315/run/jobid

date

#/usr/local/bin/dmtcp_checkpoint /homeA/home3/u19/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 4 -s /homeA/home3/u19/rufus/raxml/RAxML-src/150 -p 12345 -m GTRCAT -n T281

#/homeA/home3/u19/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 4 -s /homeA/home3/u19/rufus/raxml/RAxML-src/150 -p 12345 -m GTRCAT -n T721

#/homeA/home3/u19/rufus/c.sh $PBS_JOBID $arg &

/scratch/rufus/dmtcp_1.04-r315/bin/dmtcp_checkpoint /homeA/home3/u19/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 4 -s /homeA/home3/u19/rufus/raxml/RAxML-src/150 -f a -x 12345 -N 100 -p 12345 -m GTRGAMMA -n $name

#/homeA/home3/u19/rufus/c.sh $PBS_JOBID $arg

date
restart.csh

This is the C shell PBS script used in the cluster for submitting the Restarting job

#!/bin/csh

Set the job name

#PBS -N T4000

Request email when job begins and ends

#PBS -m bea

Specify email address to use for notification.

#PBS -M rufus@email.arizona.edu

Specify the PI group found with va command

#PBS -W group_list=nirav

Set the queue to submit this job.

#PBS -q default

Set the number of cpus up to the maximum of 8 for ICE cluster

#PBS -l select=1:ncpus=4

Specify up to a maximum of 1600 hours total cpu time for the job

#PBS -l cput=192:0:0

Specify up to a maximum of 240 hours walltime for the job

#PBS -l walltime=24:0:0

#PBS -k eo

setenv OMP_NUM_THREADS 4

unlimit

setenv DMTCP_CHECKPOINT_INTERVAL 60

#setenv DMTCP_PORT 7779

setenv DMTCP_CHECKPOINT_DIR /scratch/rufus/dmtcp_1.04-r315/run

echo $PBS_JOBID > /scratch/rufus/dmtcp_1.04-r315/run/jobid

cd /scratch/rufus/dmtcp_1.04-r315/bin

date

#/usr/local/bin/dmtcp_checkpoint /homeA/home3/u19/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 4 -s /homeA/home3/u19/rufus/raxml/RAxML-src/150 -p 12345 -m GTRCAT -n T272

#/homeA/home3/u19/rufus/raxml/RAxML-src/raxmlHPC-PTHREADS-MULTI -T 4 -s /homeA/home3/u19/rufus/raxml/RAxML-src/150 -p 12345 -m GTRCAT -n T721

/scratch/rufus/dmtcp_1.04-r315/run/dmtcp_restart_script.sh

date

Checkpointing
September 4, 2009

