

A Survey of Genome and Comparative Genome Browsers

Sheldon McKay, iPlant Collaborative; CSHL Dec 2, 2009

Outline:

- The "big three" centralized genome browsers
- Whole genome browsing
- The Generic Genome Browser and GMOD
- Comparative genome browsing with GBrowse_syn
- Dense Data Browsing

UCSC Genome Browser

Home	Genomes	Blat	Tables	Gene Sorte	r PCR	DNA	Convert	Ensembl	NCBI	PDF/PS	Session	Help	
Still LAUY	hat hostile	UCS	C Genor	me Brows	ser on I	Iuma	n Mar. 2	006 Asse	mbly	(hg18)	Wight Lost	18 J. W.	
	move <<< << >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x												
		Charles .			1. 196	1 Jan			20 10.2				
	position/search chrX:112,882,150-112,996,149 jump clear size 114,000 bp. configure chrX (q23) 22.2 q21.1 22.3 q23 [24 Xq25] Xq23]												
			1	50.1	and l		THE REAL PROPERTY.	2/ 11/ 2 T 12/ 4			and stands		
	2	Scale chrX:	112900		6 8 G 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Seg. Un iPr	11295000	30 CCDS and Compar	tive Geno	mics	234		
	RefSeq	Genes				R	efSeq Genes						
		1 Cons			'ertebrate Mu	iltiz Align	nment & Conserv	/ation (44 Spec	ies)				
	Multiz Align Simple Nucleotide Polymorphisms (dbSNP build 130) SNPs (130) #################################												
	Affy SI Affy SNP (Illumina	6.0 SV			\ _	SNP G	enotyping Array 	JS 	ų .	114.1	۲ ^۱ ۲		
	Repeat	Masker			Re 	peating El	ements by Repe	atMasker		NIN IN AN AND INT			
	move sta	rt Clic	k on a featu	re for details.	Click or dra	ag in the	base position	track to zoom	n in. Click	mov	e end		
	< 2.0 > gray/blue bars on left for track options and descriptions. < 2.0 > default tracks hide all add custom tracks configure reverse refresh												
	Collapse all Use drop-down controls below and press refresh to alter tracks displayed. Tracks with lots of items will automatically be displayed in more compact modes. • Mapping and Sequencing Tracks												
	Base Positi	on	N/A production of the		TS Marker		FISH Clones	Recom	b Rate	Map Conti	igs		
	dense 💌			CALCULATION OF COMPANY	hide 💌	200 C - 200 C	hide 🗾	hide		hide 💌	62623.00		
	Assembly		Gap		Coverage	CITATION IN	BAC End Pair	10	End Pair	A second se			
	hide 🔻	Sec. 18			hide 💌		hide 💌	hide		hide 💌	and press		
	Short Mate	n	Restr En		Viki Track	17. 20 -	A Mapability						
	hide 💌		hide	-	hide 💌	243 K 3	hide 💌						

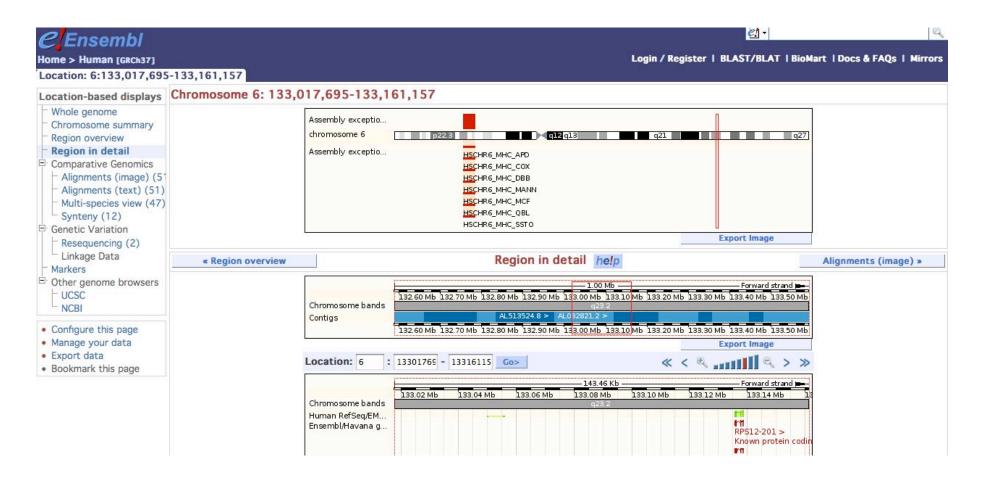
http://genome.ucsc.edu

UCSC Genome Browser

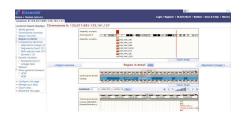
- Data sourced from NCBI's RefSeq, the Encyclopedia of DNA Elements (ENCODE) project and UCSC's own genome annotation pipeline
- 48 species represented*.
- Features sequence conservation data for 28-way comparative alignment, plus many other tracks
- 178 data tracks in the human genome browser*
- Simple user interface, typical entry point is a home page for each species
- Extensive support for third party data uploads and custom tracks

UCSC Genome Browser

• Outbound data sharing via the Distributed Annotation Protocol (DAS), table views and an FTP site.


• Written in C, many database optimizations, fast and responsive

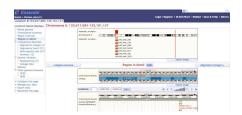
• The browser software is open-source for non-commercial users but the code base is complex and not well documented and challenging to deploy.


• Three official mirrors: Medical College of Wisconsin, Duke, and Cornell Universities

• Based on web access logs, as many as a dozen unofficial sites mirror UCSC data (H. Clawson, personal communication).

Ensembl Genome Browser

http://www.ensembl.org



Ensembl Genome Browser

- Data sourced from EMBL and other external sources
- Ensembl has its own extensive genome annotation pipeline
- Some example recent additions include genome-wide maps of protein-DNA interactions and the regulatory build, an effort to annotate all cis-regulatory sequences.

• As of release 52, 46 species plus three in pre-release, over 200 data tracks for the human genome.

• As of Sept 2008, Ensembl has 250 queries/second on its database (Guilietta Spudich, personal communication)

Ensembl Genome Browser

- Ensembl offers data sharing and custom tracks via DAS
- Data export is also available through an API to its public web server and via BioMart, a GMOD tool that supports data mining for various other major databases, including WormBase, HapMap, and VectorBase.

• Ensembl software and infrastructure are open source and fairly well documented; it is used by the Gramene database, among others. Adopters are tracked at http://www.ensembl.org/info/about/ensembl_powered.html

October 2009: Ensembl Plants!

Collaboration between EBI and Doreen Ware's group at CSHL

EnsemblPlants	Login / Register BLAST BioMart FTP Docs & F
Search Ensembl Plants Search: All species for e.g. chx28 or Carboxypeptidase	Go The Ensembl Genomes The Ensembl Genomes project produces genome databases for important species from across the taxonomic range, using the Ensembl software system. Five sites are now available: the existing <u>Ensembl Bacteria</u> , <u>Ensembl Protists</u> and <u>Ensembl Metazoa</u> sites plus
Popular genomes (Log in to customize this list) Arabidopsis thaliana TAIR9 Oryza sativa MSU6	 the newly released <u>Ensembl Plants</u> and <u>Ensembl Fungi</u> sites. These new sites complement the existing <u>Ensembl</u> site, with its focus on vertebrate genomes. You can search all Ensembl and Ensembl Genomes databases from the search bar in the top right of this page. Ensembl Genomes data is available through many of the same routes as Ensembl data. Data can be accessed via: this web browser (go to <u>http://bacteria.ensembl.org</u>, <u>http://metazoa.ensembl.org</u>, etc., or to <u>http://www.ensemblgenomes.org</u> for the project homepage). through BioMarts (query optimised data warehouses) constructed for each of the
Sorghum bicolor	 Ensembl Genomes sites (<u>Bacteria Metazoa Protists Fungi Plants</u>) via FTP (<u>ftp.ensemblgenomes.org/pub</u>) via the Ensembl Genomes public mysql server (mysql.ebi.ac.uk:4157:anonymous). using the Ensembl API.
All genomes Select a species View full list of all species	The API has been modified slightly to support the existence of "genome collections", i.e. the existence of many small genomes in a single Ensembl database (a model which has been adopted for Ensembl Bacteria). The API makes the use of multi-genome databases transparent to users interested in a single genome, while methods to access a traditional, single-genome database, are unchanged. We aim to keep Ensembl Genomes software in synch with software releases of Ensembl, to ensure that users can access databases from across the taxonomic range using the same software.

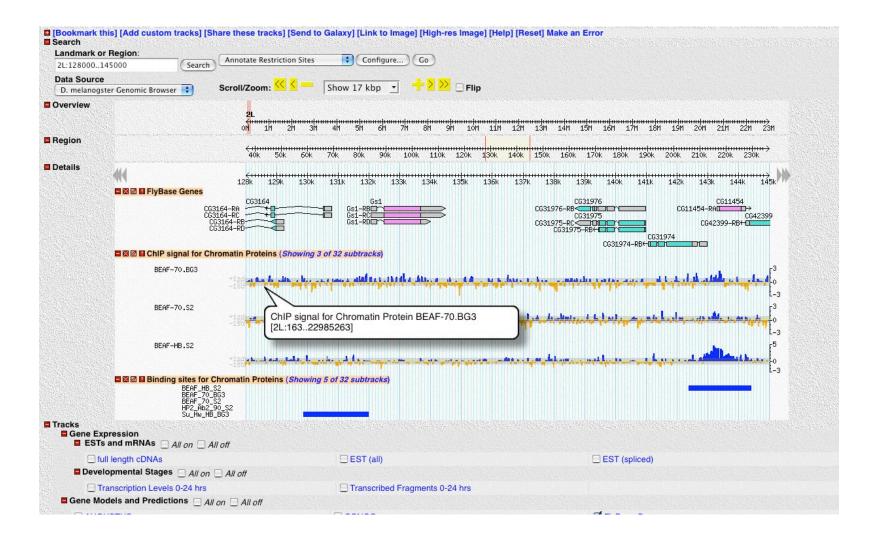
http://plants.ensembl.org/index.html

NCBI Map Viewer

i			Entrez			BLAST			OMIM	Taxonomy			Structure
_							0	Find	Find in This View		Advanced	Search	
1	<u>Homo sapie</u>	ens (hu	<u>iman)</u> B	uild 37.1 (C	urrer	<u>nt)</u>					B	LAST T	he Human Genome
(Chromosome: [1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y MT												
1	Master Map	o: Gen	es On Se	equence					Summary of Maps				Maps & Options
	Region Displa	-	200 C							Down	Download/View Sequence/Evidence		
I	deogran →X	Cont	ig • X • NT_077402.	Hs UniG		ies_seq 🔀	Symbol	0	Links		E	Cyto	Description
			NT_077912. NT_004350. NT_021937.	Hs.517145			CALML6	÷	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	calmodulin-like 6
	1p36.13 - 1636:12 -		NT_004610.	Hs.388664 Hs.370858 Hs.707988			- LOC1002875	<u>06</u> +	<u>sv</u> <u>dlevmm</u>		mRNA	1	hypothetical prote
	1p36.13 1p36.12 1p36.12 1p36.12 1p36.13 1p34.3 1p34.3			Hs.181163 Hs.706890 Hs.370581		1 - N	RNU5E	÷	HGNC sv dl ev mm		best RefSeq	1	RNA, U5E small
	1p34.1 -	508-		Hs.3873 Hs.473583 Hs.706748			HTR6	÷	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1p36-p3	5 5-hydroxytryptam
	1p32.3 - 1p32.2 - 1p32.1 - 1p31.3 - 1p31.2 - 1p31.1 -		NT_032977.	Hs.512675 Hs.180909 Hs.498727 Hs.708014			SNIP1	t	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	Smad nuclear inte
							HEYL	t	OMIM HGNC sy pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1p34.3	hairy/enhancer-of
	1p22.3 -			je.			DMBX1	÷	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	diencephalon/mes
	1p22.1 - 1p21:1 -	100		Hs.532359			CYP4A11	t	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	cytochrome P450
	1p13.3 -			Hs.73799 Hs.713562	11		LITD1	÷	HGNC sv pr dl ev mm hm s	ts <u>SNI</u>	best RefSeq	1	LINE-1 type trans
			NT_077389.	Hs.3713562 Hs.371889 Hs.487296			TGFBR3	t	OMIM HGNC sy pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1p33-p3	2 transforming grow
	1912 -	-	NT_113793. NT_113796. NT_113797. NT_079485.			1	IGSF2	÷	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1p13	immunoglobulin s
	1q21.1 - 1q21.2 - 1q21.3 -	15 0H-	NT_079497.	Hs.533977 Hs.515947 Hs.515947			- LOC1001329	99 +	<u>sv prdl ev mm hm s</u>	ts <u>SNI</u>	mRNA	1	hypothetical prote
	1922 -	10011	NT_167185. NT_113799.	Hs.594444			TDRKH	t	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1q21	tudor and KH don
	1923.2 - 1923.3 - 1924:3 -			Hs.517168 Hs.386726 Hs.573688			NBPF18P	÷	HGNC sv dlev mm s	ts	best RefSeq	1	neuroblastoma bre
1324:1 1924:1 1925:1 1925:3		NT_004487.	Hs.518374 Hs.518525			ATP8B2	÷	OMIM HGNC sy pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	ATPase, class I, ty	
	1931-1	2008-			-		RXFP4	÷	OMIM HGNC sv pr dl ev mm hm s	ts CCDS SNI	best RefSeq	1	relaxin/insulin-lik
	1932.1 - 1932.2 - 1932.3 -		NT_086602.	Hs. 108080			MAEL		OMIM HGNC sv pr dl ev mm hm s				maelstrom homol
	1342:12			Hs.511425			PRELP		OMIM HGNC sv pr dl ev mm hm s		Sheet managed and 17		proline/arginine-ri
	1942.13 - 1942.2 - 1942.3 -	-	NT_167186.	Hs.286221 Hs.19383			RPL13AP11	÷	HGNC sv dlev mm		best RefSeq	weet to warm	ribosomal protein
	1943 - 1944 -		NT_032968.	Hs. 166463			- OR14A2	+	HGNC sy pr dl ev mm		best RefSeq		olfactory receptor

Summary of Mane

www.ncbi.nih.gov/mapview



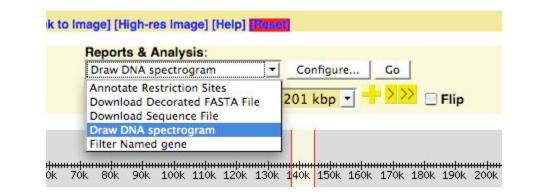
NCBI Map Viewer

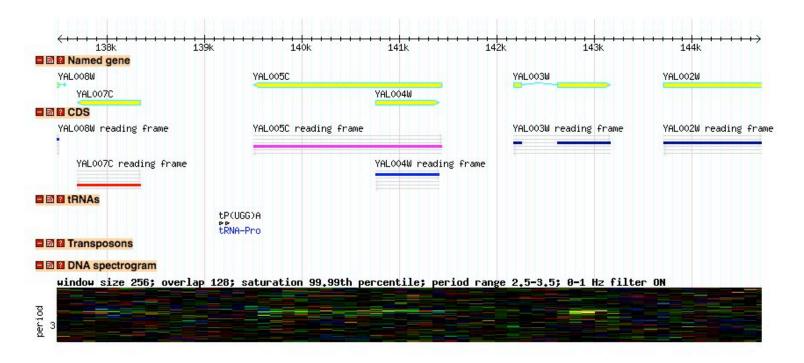
• National Center for Biotechnology Information best known for GenBank, PubMed, RefSeq, etc.

- Also has a Map Viewer for genome annotations
- Draws from the formidable NCBI toolkit.
- Supports 106 Species*, but a relatively small number of tracks
- Navigation features of the interface are somewhat limited
- Underlying data available via ftp or the BioPerl API (DO NOT attempt "screen scraping" scripts)
- No support for custom tracks, third-party annotation, DAS

The Generic Genome Browser

gmod.org


The Generic Genome Browser


om 1M 17M 101 11M 14M 15M 16M 12M 13M Region TV om im 0.1M 0.3M 0.4M 0.5M 0.6M 0.7M 0.8M 0.9M 0.2M Details (1111 90k 100k 110k 120k 130k 140k 150k 160k 170k 180k Expression patterns tpa-1 (sIs10289) tpa-1 (sEx10289) Gene Models ←IM ID→ MD→ MTMDH→ MTMDH→ MTMM+ MTMM+H→ -HDH ₽ NOT APP H ← 4m HmH n Hinn Hi ND **CHEMINI**A <III Transciption tiling arrays 0.000000000 non-polyA_RNA 11.0 10 1 10 000 Clear highlighting Update Image В С <++++++ 90k 100k 130k 140k 150 110k 120k IV:115000..140000 Expression patterns Zoom in 110k tpa-1 (sIs10289) Dump selection as FASTA 25 kbp tpan Browse selection in the modENCODE browse (sEx10289) Browse selection at UCSC Gene Models BLAT this sequence (HII) **BLAST** this sequence Reporter gene for tpa-1 <nrvi ku⇒ mun⇒ ⇒ ∢ Larval Expression: intestine, body wall muscle, Nervous System, head neurons, tail neurons, unidentified cells Transciption tiling Ð polyA_RNA small RNA non-polyA_RNA Small ESTs aligned by B NO INCOMENTS MADE

Dynamic and Configurable User Interface

Α

Overview

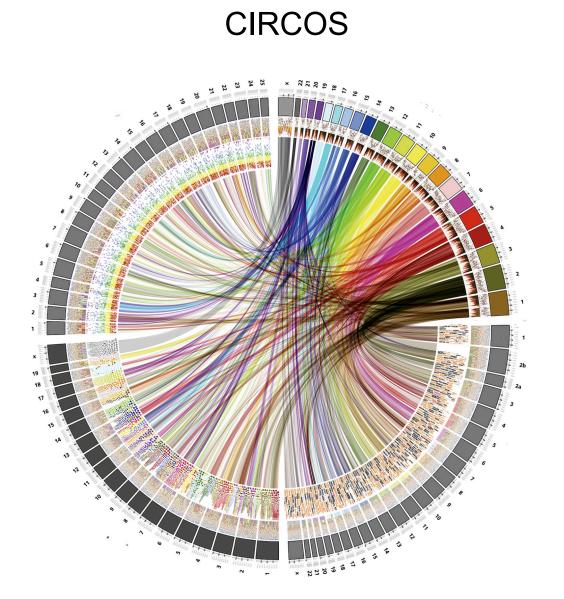
Flexible Plugin Architecture

A few words about GMOD

Why GMOD/GBrowse?

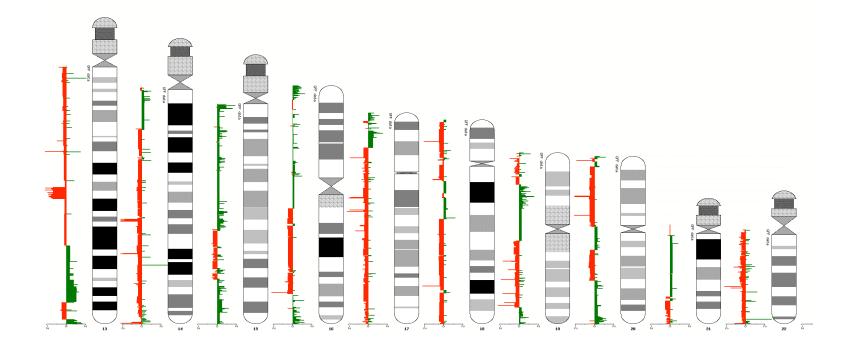
Transparent, open source, collaborative development

Decoupled from underlying data sources; portable, configurable, understandable

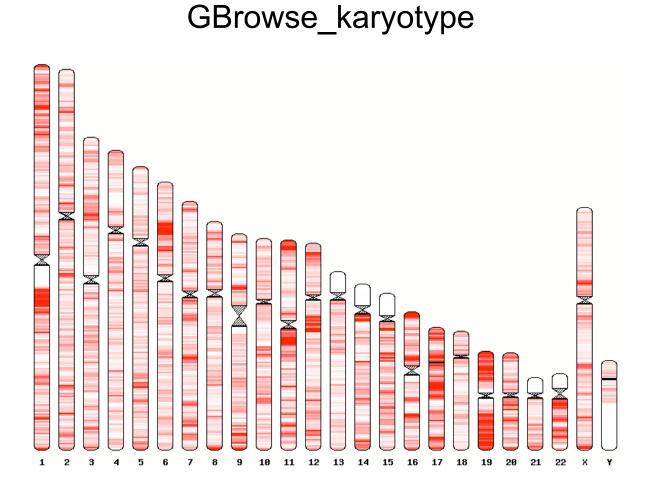

Interoperability

Outreach and training

Free tech support; mailing lists; help-desk


Large and enthusiastic user community (GBrowse is installed on top of hundreds of genome databases, including all major MODS).

Whole Genome Browsing


http://mkweb.bcgsc.ca/circos/

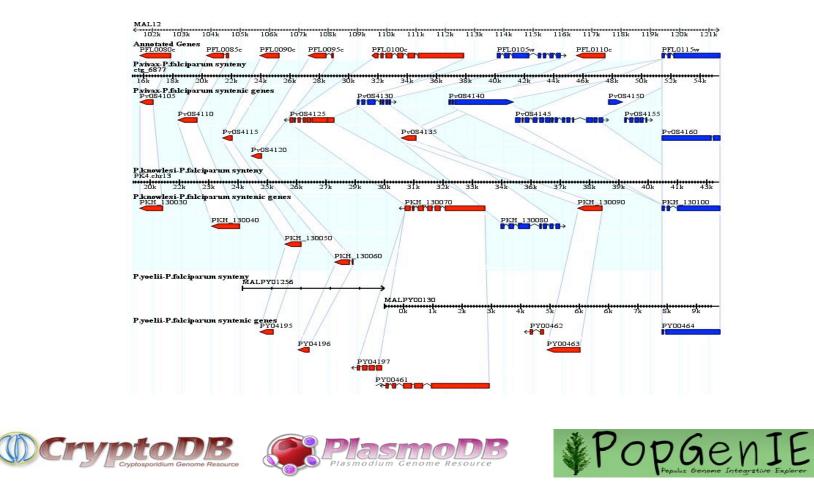
GBrowse_karyotype

CNV data for human chromosomes 13-22

http://gmod.org/GBrowse_karyotype

Ensembl gene density plotted on the human karyotype

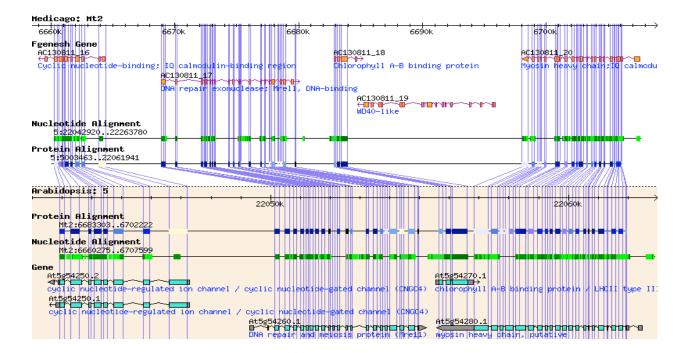
Synteny Browsers


What is a Synteny Browser?

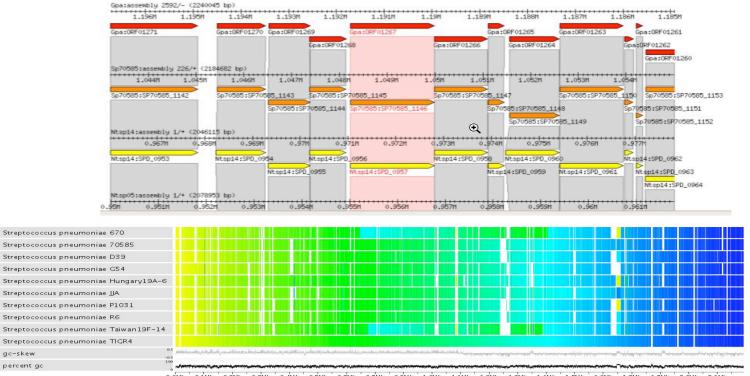
- Has display elements in common with genome browsers

-Uses sequence alignments, orthology or co-linearity data, to highlight different genomes, strains, etc.

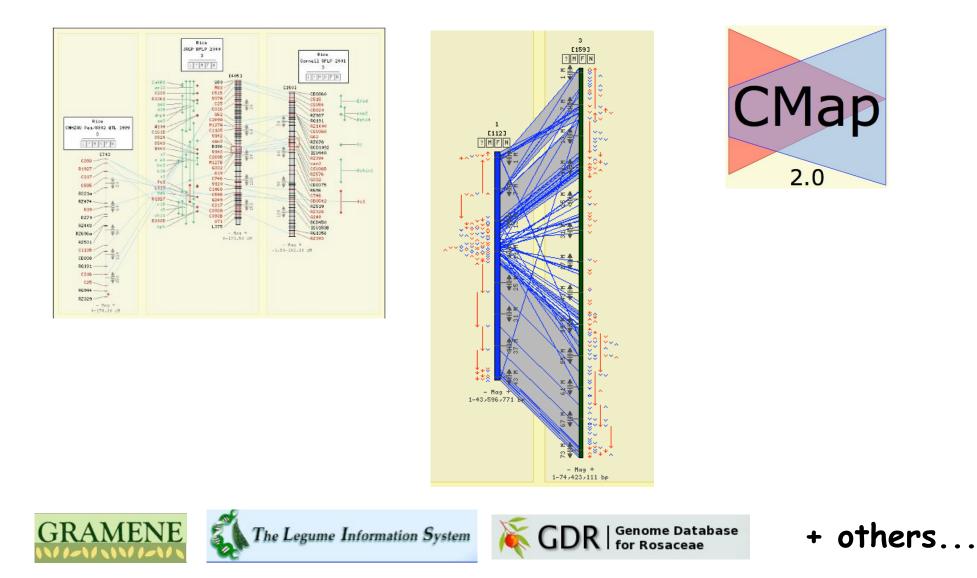
-Usually displays co-linearity relative to a reference genome.


SynView A Simple Approach to Visualizing Comparative Genome Data

Wang H, Su Y, Mackey AJ, Kraemer ET and JC Kissinger . SynView: a GBrowse-compatible approach to visualizing comparative genome data Bioinformatics 2006 22:2308-2309

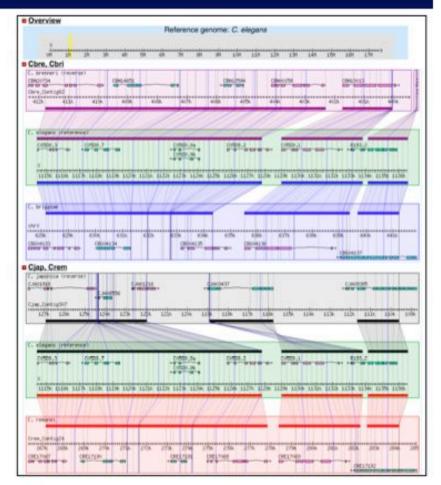

... A Synteny Browser for Comparative Sequence Analysis

Pan, X., Stein, L. and Brendel, V. 2005. SynBrowse: a Synteny Browser for Comparative Sequence Analysis. Bioinformatics 21: 3461-3468


Sybil: Web-based software for comparative genomics

o.oʻMbʻo.imbio.imbio.i

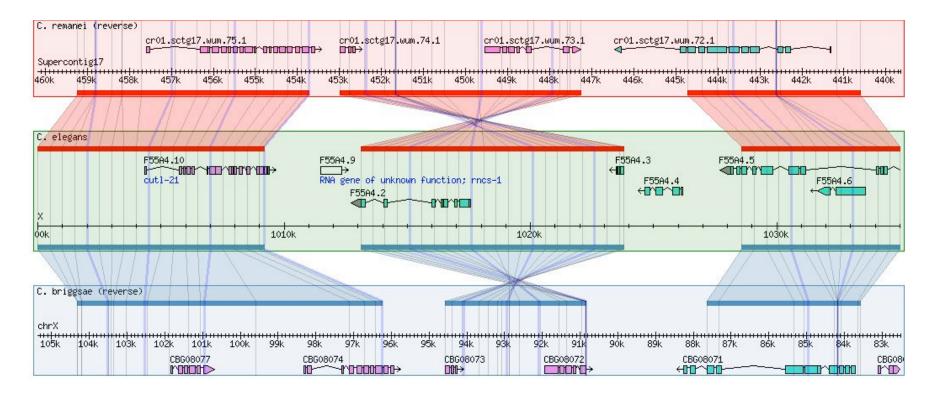
J. Craig Venter


Crabtree, J., Angiuoli, S. V., Wortman, J. R., White, O. R. Sybil: methods and software for multiple genome comparison and visualization Methods Mol Biol. 2007 Jan 01; 408: 93-108.

Youens-Clark K, Faga B, Yap IV, Stein LD, Ware, D. 2009. CMap 1.01: A comparative mapping application for the Internet. doi:10.1093

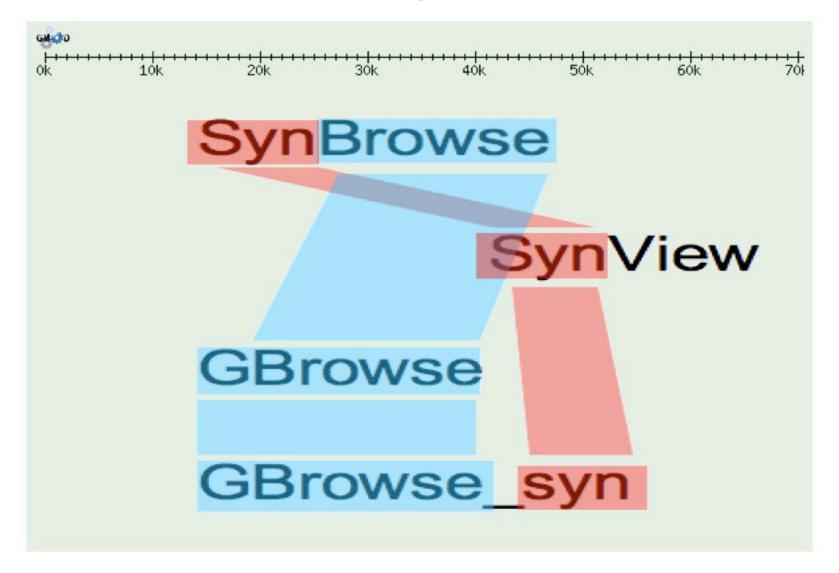
GBrowse_syn

- GBrowse based comparative genomics viewer
- Shows a reference sequence compared to 2 or more others
- Can also show any GBrowse-based annotations


Example comparing *C. elegans* to 4 other species at WormBase

Sheldon McKay, Cold Spring Harbor Laboratory

GBrowse_syn



Branding ideas..

GMOD Browser branding/nomenclature issues...

SynView:

- Add-on to native GBrowse package
- Uses GFF3 or DAS1 compliant data adapters
- GFF requires special tags (allowed in spec.)
- Reference panel on top

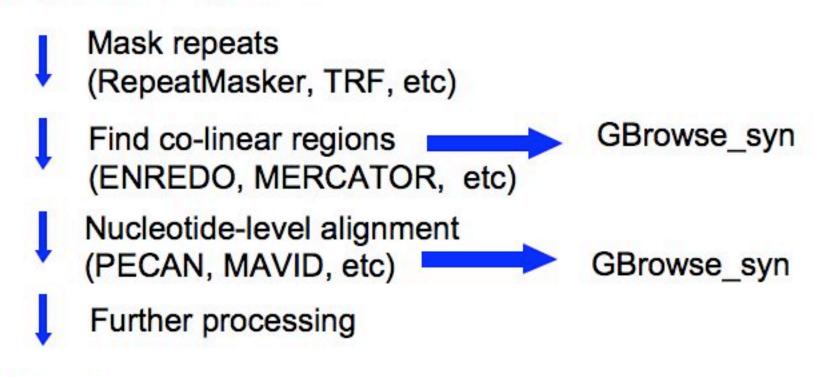
SynBrowse:

- Uses same core libraries as Gbrowse
- Uses GFF database adapter
- GFF2 uses standard 'Target' syntax
- Currently only supports two species
- Central reference panel?

Sybil:

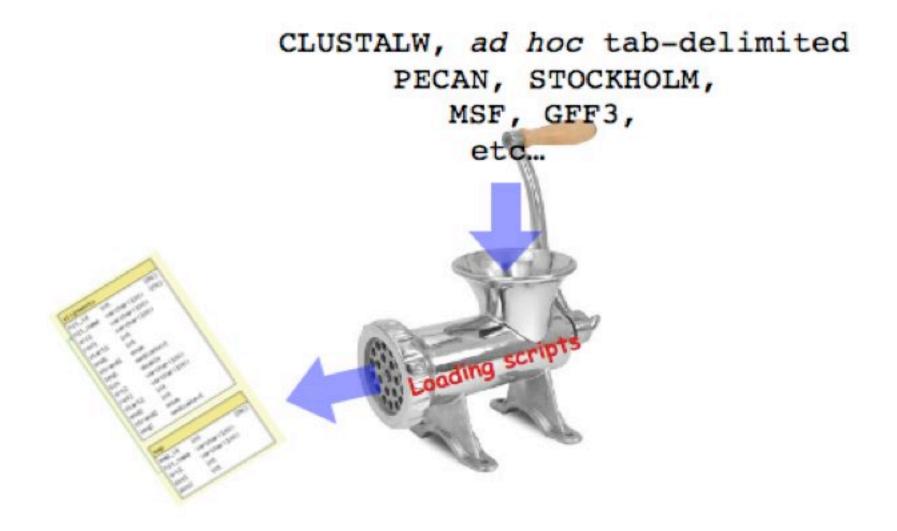
- Not GBrowse-based
- Uses chado database
- Whole genome and detailed views

GBrowse_syn:

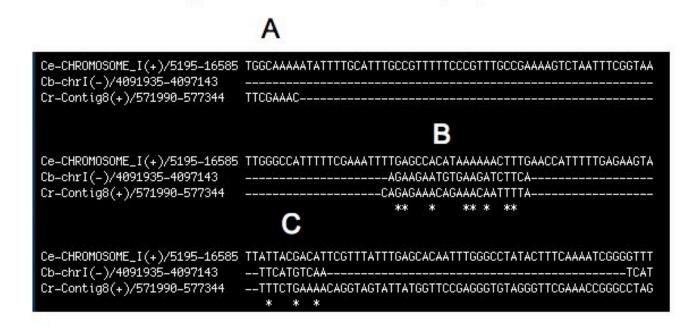

- Part of GBrowse distribution
- Uses native GFF2/3 or chado adapters for species' data
- Synteny data are stored in a separate joining database

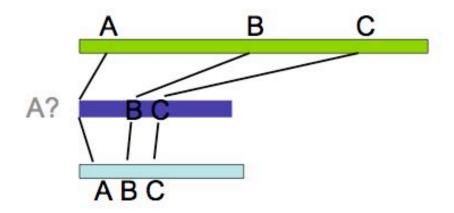
How is GBrowse_syn different?

- Does not rely on perfect co-linearity across the entire displayed region (no orphan alignments)
- Offers on the fly alignment chaining
- No upward limit on the number of species
- Used grid lines to trace fine-scale sequence gain/loss
- Seamless integration with GBrowse data sources
- Ongoing support and development
- Some people think it looks nice

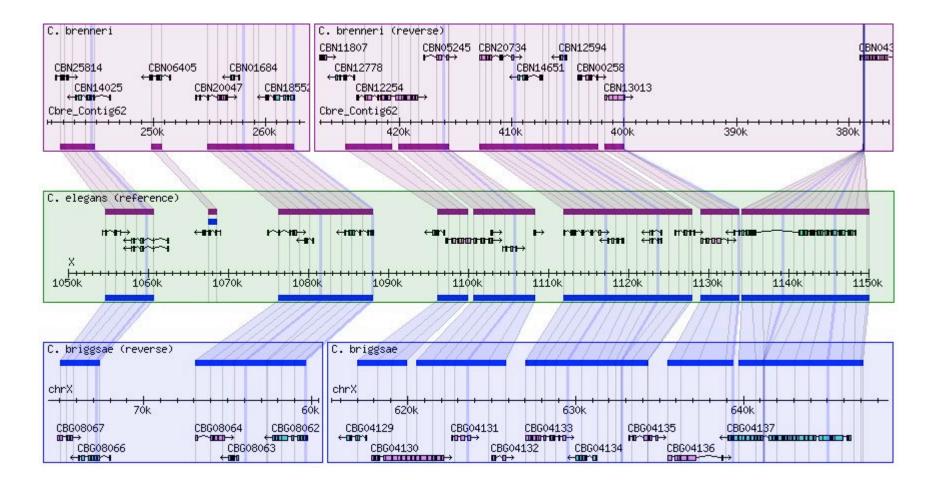

Hierarchical Genome Alignment Strategy

Raw genomic sequences

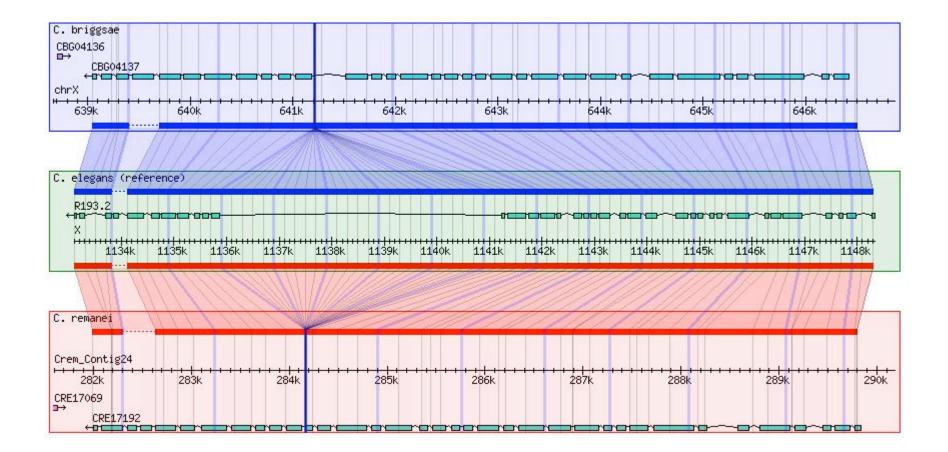


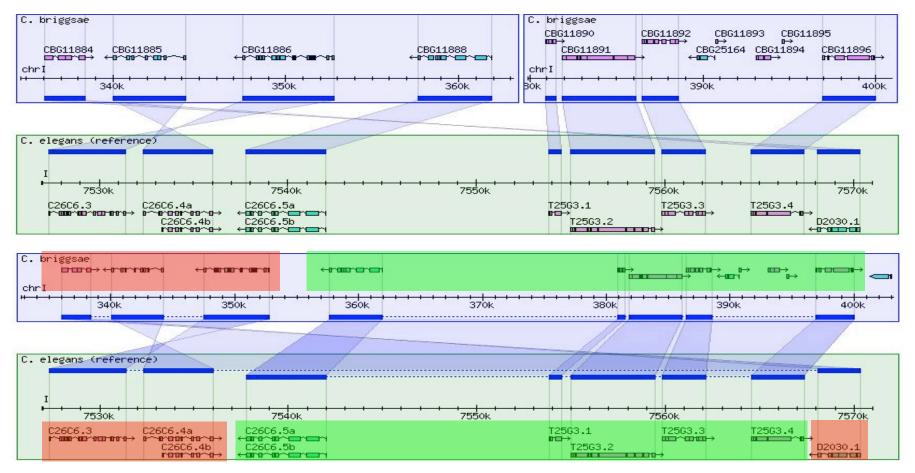

GBrowse

Interoperability

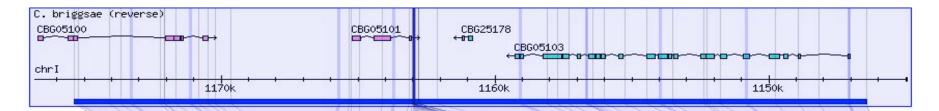


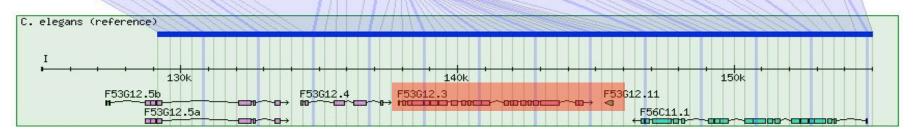
Problem : How to use Insertions/Deletion data

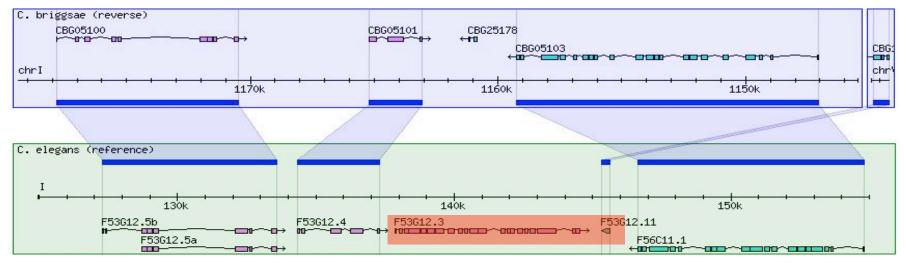




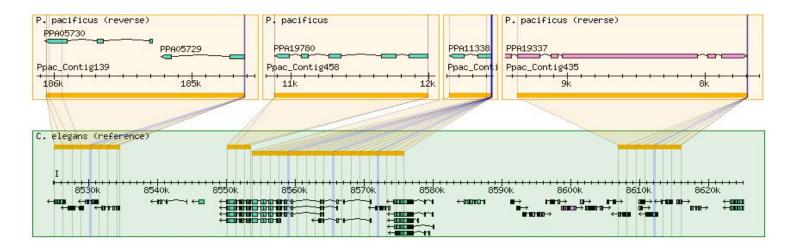
Tracking Indels with grid lines



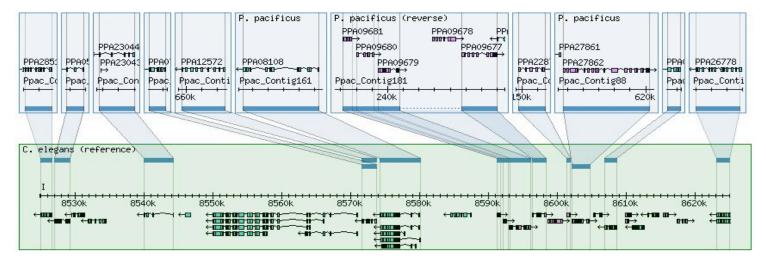

Evolution of Gene Structure



Alignment chaining. GBrowse_syn provides on-board functionality to "chain" alignments together if they are co-linear, in the same orientation and have monotonically increasing coordinates. This is sometimes helpful to visualize higher order chromosome rearrangements. In this example, chaining the alignments (lower panel) helps to visualize a possible model where an inversion affecting the genes highlighted in red was followed by a nested insertion of the block of genes highlighted in green.



Gene loss. A portion of the *C. elegans* and *C. briggsae* genomes from WormBase. The top view shows DNA sequence alignment data. Grid-lines indicate the relative coordinates in the two sequence. Smaller and larger spaces indicate gaps or insertions relative to the reference sequence, respectively. There is a large gap in the *C. briggsae* chromosome sequence that affects the genes highlighted in red. Independent orthology data (shown in the lower panel) are consistent with a translocation of the small gene and a complete loss of the larger gene in *C. briggsae*.


What if the aligned DNA sequences are too distant?

Pecan alignments

Protein orthology based Synteny blocks

GBrowse_syn or Sybil or SynView?

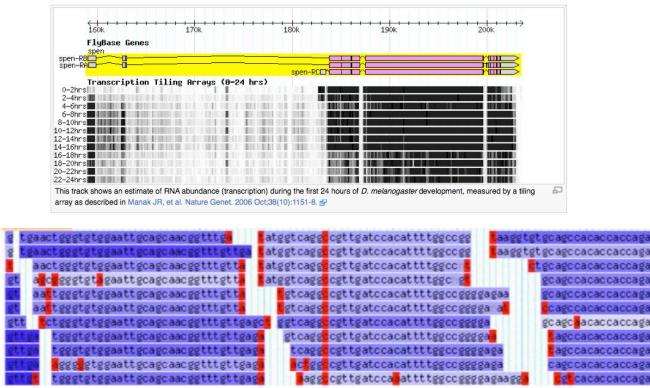
GBrowse_syn Most actively developed Scalable Familiar interface Extensive documentation Growing user community

SynView Scalable Familiar interface

Sybil Whole genome and other unique visualizations Unfamiliar interface

GBrowse_syn Future Work

- Integration with GBrowse 2
- "On the fly" sequence alignment view
- High-level graphical overview
- AJAX based user interface and navigation.
 - Submitting grant next week proposing implementing a JBrowse based synteny browser


GBrowse_syn Resources

Home Page	http://gmod.org/wiki/GBrowse_syn
Tutorial	http://gmod.org/wiki/GBrowse_syn_Tutorial
User Help	http://gmod.org/wiki/GBrowse_syn_Help
Configuration	http://gmod.org/wiki/GBrowse_syn_Configuration
Example	http://www.wormbase.org/cgi-bin/gbrowse_syn/
Mailing List	https://lists.sourceforge.net/lists/listinfo/gmod-gbrowse

High Density Data

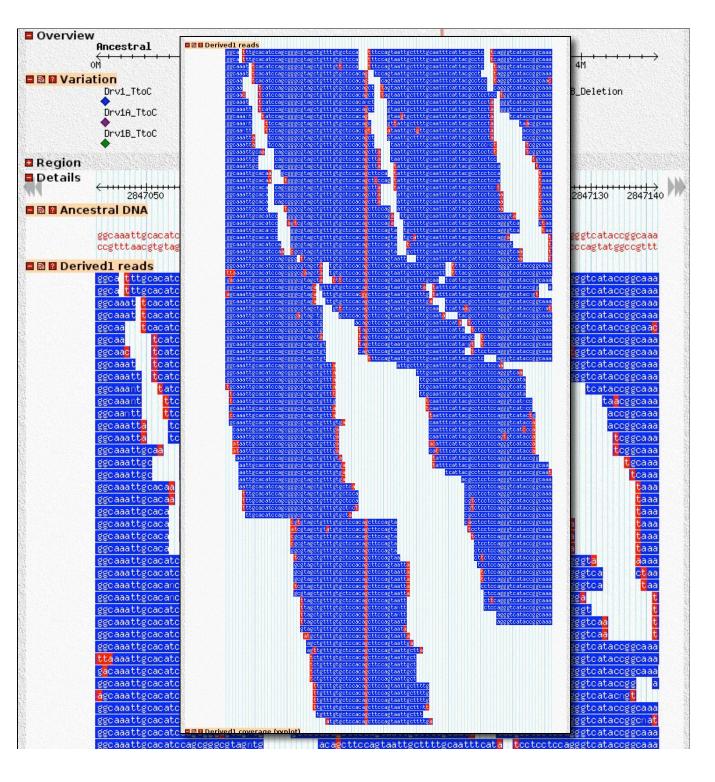
Dealing with very dense data

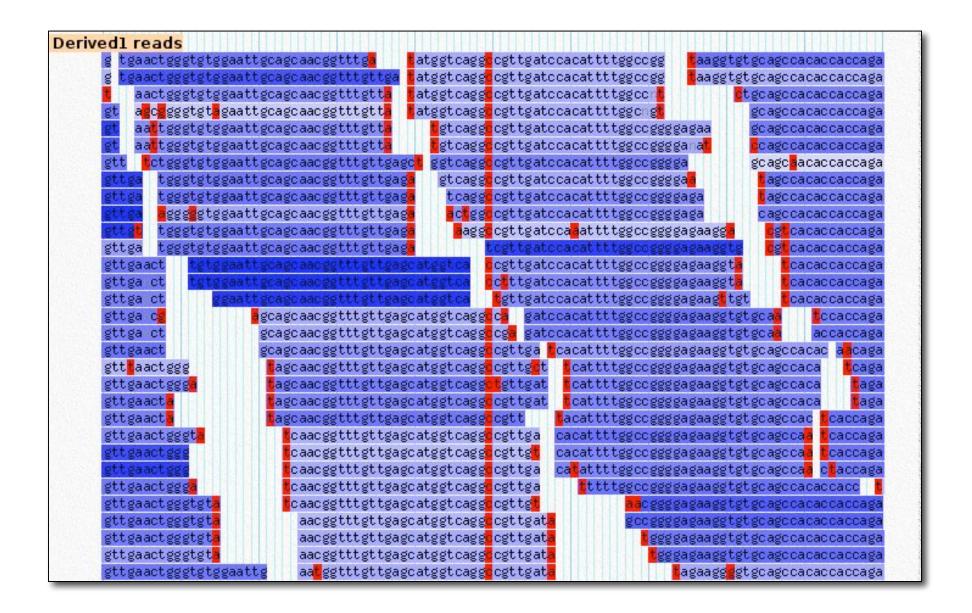
- Microarrays
- Next-gen Sequencing

- Wiggle
 - Large amounts of scored data with genomic coordinates
 - Too many table rows for a relational database
 - Solution is a hybrid database/serialized data approach

WIG is a format specification introduced by the UCSC Genome Browser and also adopted by GBrowse

- 1) The WIG file is converted to a query-optimized binary file
- 2) A pointer to the binary file is stored in the database
- 3) An external adapter queries the binary file


http://genome.ucsc.edu/goldenPath/help/wiggle.html http://gmod.org/wiki/GBrowse/Uploading_Wiggle_Tracks

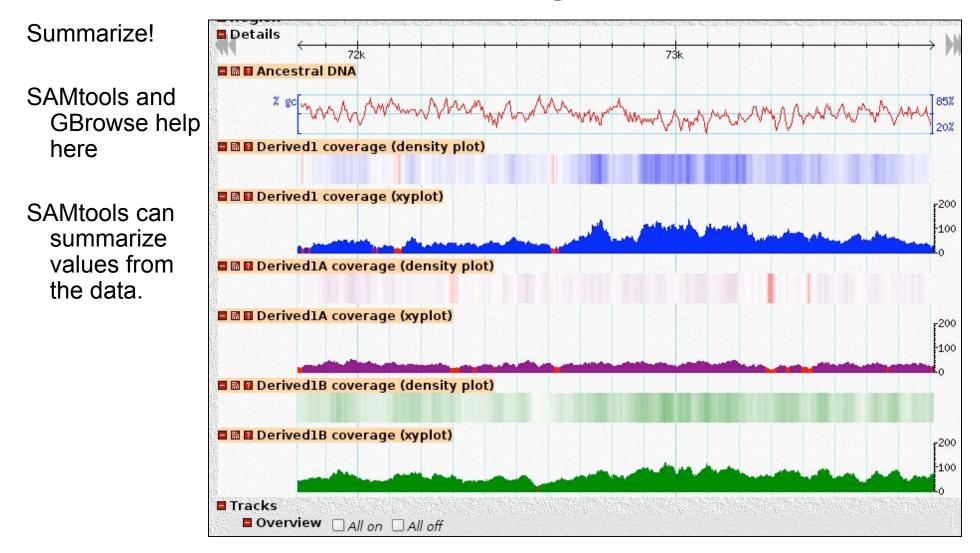

- SAM/BAM (Sequence Alignment/Map)
 - NGS data generates huge numbers of aligned reads
 - The SAM specification allows efficient storage of read alignments against reference sequences
 - BAM is a highly efficient, compressed binary version of SAM
 - The SAMTools package provides utilities for handling the alignment data.
 - Third party implementers are starting to support SAM/BAM, for example Bio::DB::SAM/GBrowse

http://samtools.sourceforge.net/

High magnification view: 100bp

Uses GBrowse 2 (Beta) and the Bio::DB::Sam GBrowse database adaptor (Alpha), and SAMtools

Anything in SAM format is accessible.


As you zoom out to 200bp you lose letters.

As you zoom out to 2000bp the view becomes much less useful.

SAMtools, GBrowse 2, & Bio::DB::Sam adaptor make this volume of data computationally tractable

GBrowse as an Alignment Viewer

Acknowledgments

- GMOD
- iPlant Collaborative
- NESCent
- TAIR
- WormBase
- ModENCODE