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A vital quest in biology is comprehensible visualization and interpretation of correlation relationships on a genome scale. Such
relationships may be represented in the form of networks, which usually require disassembly into smaller manageable units, or
clusters, to facilitate interpretation. Several graph-clustering algorithms that may be used to visualize biological networks are
available. However, only some of these support weighted edges, and none provides good control of cluster sizes, which is
crucial for comprehensible visualization of large networks. We constructed an interactive coexpression network for the
Arabidopsis (Arabidopsis thaliana) genome using a novel Heuristic Cluster Chiseling Algorithm (HCCA) that supports
weighted edges and that may control average cluster sizes. Comparative clustering analyses demonstrated that the HCCA
performed as well as, or better than, the commonly used Markov, MCODE, and k-means clustering algorithms. We mapped
MapMan ontology terms onto coexpressed node vicinities of the network, which revealed transcriptional organization of
previously unrelated cellular processes. We further explored the predictive power of this network through mutant analyses
and identified six new genes that are essential to plant growth. We show that the HCCA-partitioned network constitutes an
ideal “cartographic” platform for visualization of correlation networks. This approach rapidly provides network partitions
with relative uniform cluster sizes on a genome-scale level and may thus be used for correlation network layouts also for other
species.

The complete, or partial, genome sequences from a
vast number of organisms have increased our under-
standing of the design principles for biological sys-
tems (Kitano, 2002). The sequence availability has also
provided platforms for various omics technologies,
including transcriptomics, interactomics, and proteo-
mics (Schena et al., 1995; Li et al., 2004; Baerenfaller
et al., 2008). Such techniques have generated an im-
mense amount of data that for the most part are
publicly available. One of the central ideas behind the
concept of systems biology is to utilize these types of
data sets to reveal functional relationships between
genes, proteins, and other molecules (Kitano, 2002).
Transcriptional coordination, or coexpression, of

genes may uncover groups of functionally related
genes (DeRisi et al., 1997; Ihmels et al., 2004; Brown
et al., 2005; Persson et al., 2005; Wei et al., 2006; Usadel

et al., 2009). Such relationships were initially utilized
to reveal functional gene modules in yeast and mam-
mals (Ihmels et al., 2004) and to explore orthologous
gene functions between different species and king-
doms (Stuart et al., 2003; Bergmann et al., 2004).
Comparable studies have also been undertaken in
plants (Brown et al., 2005; Persson et al., 2005; Hirai
et al., 2007). In addition, several Web-based tools for
plants offer various forms of coexpression analyses.
These include CressExpress (Srinivasasainagendra
et al., 2008), ATTED-II (Obayashi et al., 2009), Arabi-
dopsis Coexpression Data Mining Tools (Manfield
et al., 2006), Genevestigator (Zimmermann et al., 2004),
GeneCAT (Mutwil et al., 2008), CSB.DB (Steinhauser
et al., 2004), CoreCarb (Mutwil et al., 2009), and Ex-
pression Angler of the Bio-Array Resource (Toufighi
et al., 2005). These tools can provide coexpressed gene
lists for user-specified query genes and thus represent
user-friendly Web resources for biologists.

While it appears useful for scientists to examine
these types of coexpression lists, more information is
generally acquired by visualizing the relationships in
the form of networks (Jupiter and VanBuren, 2008).
Several studies have explored the properties of such
network assemblies (Barabási and Oltvai, 2004; Ihmels
et al., 2004; Ma et al., 2007; Mentzen and Wurtele,
2008). The distribution of connections in the networks
may generally be described by power-law-related
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relationships (i.e. a small number of nodes appear to
have a large number of connections, while most nodes
have very few connections; Albert, 2005). Another
apparent feature is that essentiality correlates with
high connectivity in both coexpression and protein-
protein interaction networks in several species (Jeong
et al., 2001; Bergmann et al., 2004; Carlson et al., 2006),
although this relationship is less clear in mammalian
protein-protein interaction networks (Gandhi et al.,
2006; Zotenko et al., 2008).

Although features of coexpression and protein-
protein interaction networks have been investigated,
the output is generally not very useful for visual
inspection and interpretation. One major task, there-
fore, is to make the networks more accessible to
biologists (i.e. to produce visualizations of networks
that may easily be interpreted; Aoki et al., 2007). For
genome-scale networks, this requires dividing the
network into smaller manageable units, or clusters.
Such clustering, however, may artificially assign genes
to certain clusters and therefore skew the output of the
biologically “correct” network. It is important, there-
fore, to maintain as many relevant biological relation-
ships as possible despite division. The ideal number,
or size, of clusters to maintain these relationships is
very rarely known and is generally very difficult to
predict for biological networks. On the other hand,
biological networks may also be viewed as clusters
within clusters (i.e. as a hierarchical structure that can
be viewed on different levels). For example, genes
associated with photosynthesis may be viewed as a
cluster that belongs to a supercluster of genes associ-
ated with functions in the chloroplast. Thus, the ideal
clustering algorithm, and subsequent visualization
scheme, should generate partitions of manageable
sizes that can be readily reconnected into a whole
network to be used for manual inspection.

Several graph-clustering algorithms are available,
for example Markov Clustering (MCL; van Dongen,
2000), Restricted Neighborhood Search Clustering
(King et al., 2004), MCODE (Bader and Hogue, 2003),
and others, such as the recently published CAST
algorithm (Huttenhower et al., 2007; Vandepoele
et al., 2009), but none of these may efficiently control
cluster sizes. While these partitioning methods pro-
vide useful layouts for global biological and clustering
interpretations, they are not particularly useful for
visual inspection. To overcome this problem, we de-
veloped a novel Heuristic Cluster Chiseling Algorithm
(HCCA) and employed it to construct an interactive cor-
relation network for the Arabidopsis (Arabidopsis thaliana)
genome (Arabidopsis Gene Network [AraGenNet];
http://aranet.mpimp-golm.mpg.de/aranet). We show
that the HCCA-generated cluster solutions were as
good as, or better than, the commonly used partition
algorithms Markov, MCODE, and k-means using real-
world data. We also show that this type of visualization
may reveal biological relationships that are not appar-
ent from single gene coexpression approaches. Finally,
we explored the network surroundings to identify

essential Arabidopsis genes and present six new genes
that are essential for plant growth through mutant
analyses.

RESULTS AND DISCUSSION

Calculation of Pearson-Based Correlation Networks

To generate a starting network for the HCCA, we
calculated the degree of transcriptional coordination
between all the genes present on the Arabidopsis
ATH1 array (22,810 probe sets) using 351 Robust
Multi-array Average (RMA)-normalized microarray
data sets from The Arabidopsis Information Resource
(TAIR). Prior to choosing these data sets, we removed
data sets that displayed poor replication between
arrays (Mutwil et al., 2008). Since it is rather difficult
to assess whether lowly expressed genes represent
noise or real data, we chose to include all probe sets in
the analysis. We then calculated an all-versus-all co-
expression network matrix using a Pearson correlation
coefficient cutoff of 0.8. In contrast to Spearman cor-
relation, Pearson correlations only capture linear rela-
tionships between any two given components.
However, it is anticipated that most linked expression
profiles will adhere to a linear relationship (Daub et al.,
2004).

The distribution of connections in Pearson correlation-
based biological networks may generally be described
by power-law-related relationships (i.e. a small number
of nodes appear to have a large number of connec-
tions, while most nodes have very few connections;
Barabási and Oltvai, 2004). To assess whether the
topology of the obtained Pearson correlation network
for Arabidopsis also followed such a relationship, we
calculated the node degree distribution of all individ-
ual nodes in the network. Figure 1A shows that the
node degree distribution is best described by a trun-
cated power-law behavior. We also observed similar
deviations from classical power-law behavior in Pear-
son correlation networks generated for yeast (Saccha-
romyces cerevisiae) and to a lesser degree for Escherichia
coli (Fig. 1B), in agreement with recent reports (van
Noort et al., 2004).

Centrality Versus Essentiality

Another apparent feature in biological networks is
that essentiality typically correlates positively with
high node degree (i.e. mutations in highly connected
nodes tend to result in more severe phenotypes com-
pared with less well-connected nodes; Jeong et al.,
2001; Albert, 2005; Carlson et al., 2006; Zotenko et al.,
2008). To assess if this type of relationship also is
evident in our Pearson correlation network, we ana-
lyzed gene connectivity versus embryo lethality. We
did this by linking phenotypic data from TAIR (www.
arabidopsis.org) to the genes in our Pearson-based
network (r = 0.8). Figure 1A shows the node degree
distribution of embryo-lethal genes, genes associated
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with any type of phenotype, and all genes included on
the ATH1 microarray. Whereas the node degree dis-
tribution for genes associated with nonlethal pheno-
types did not deviate significantly compared with all
genes present on the ATH1 gene chips (Fig. 1A), genes
corresponding to embryo lethality were significantly
more connected compared with nonessential genes
(Fig. 1A; Supplemental Fig. S4B; P , 0.05). Similar
observations have also been reported for coexpression
and protein-protein interaction networks in yeast
(Albert, 2005; Carlson et al., 2006).

Construction of a Highest Reciprocal Rank-Based

Correlation Network in Arabidopsis

Several studies have used r value cutoffs ranging
between 0.6 and 0.8 to depict coexpression correlations
(van Noort et al., 2004). However, different genes have
different distributions of r values (i.e. at a given cutoff,

some genes may correlate significantly with hundreds
of genes while other genes may not correlate with
any). Despite this, it is still possible that the latter may
hold biologically relevant relationships. For example,
the two transcription factors MYB33 (At5g06100) and
MYB65 (At3g11440) regulate pollen and anther devel-
opment, are expressed similarly, and are functionally
redundant (Millar and Gubler, 2005). However, an r
value cutoff of 0.8 did not associate these genes tran-
scriptionally (r = 0.7; data not shown; Mutwil et al.,
2008). To minimize this problem, we chose to normal-
ize the r value distributions in the calculated Pearson
correlation networks using highest reciprocal rank
(HRR) as they define the mutual coexpression rela-
tionship between two genes of interest. Using this
approach, MYB33 and MYB65 were readily transcrip-
tionally linked (mutual average rank = 2 usingGeneCAT;
Mutwil et al., 2008). With this approach, we were also
able to define a connection cutoff, or maximum number

Figure 1. Network characteristics and mutant
analyses. A, Log-log plot of node degree distribu-
tion for 261 essential genes (red points), 1,224
nonessential genes (green points), and all genes
(22,810; blue points) in the Pearson correlation
network (r $ 0.8) for Arabidopsis. B, Log-log plot
of node degree distribution for Pearson correla-
tion networks (r $ 0.8) from E. coli (blue), yeast
(red), and Arabidopsis (green). The x axis repre-
sents the node degree (i.e. the number of con-
nections a node holds), and the y axis displays the
frequency (i.e. the number of genes [B]) or the
normalized frequency (i.e. the normalized num-
ber of genes [A]) showing this degree.
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of connections, for a given gene. The importance of
defining such a cutoff is apparent when looking at
the distribution of r values among the data. For exam-
ple, approximately 1,500 genes are only expressed in
pollen (estimated from GeneCAT; Mutwil et al.,
2008). All of these genes are correlated with each
other with an r value of 0.8 and therefore should be
connected to each other in a Pearson-based correla-
tion network (Mentzen and Wurtele, 2008). However,
it is virtually impossible to retain any information
from such a network structure through manual in-
spection. Instead, we argue that displaying these
genes in close network vicinities, which is achieved
by the HRR-based network, is more useful. In addition,
recent results indicate that correlation-ranked net-
works produce sounder results than networks based
on correlation coefficients (Obayashi and Kinoshita,
2009).

We set the HRR limit to 30, thus capping the max-
imum number of edges per node to 30. The resulting
HRR network seemed a reasonable compromise be-
tween readability and richness of information. In
addition, we defined three degrees of coexpression
weights using highest reciprocal ranks of 10, 20, and 30
(Mutwil et al., 2008). Similar approaches have also
been used by several coexpression Web tools, such as
GeneCATand ATTED-II (Mutwil et al., 2008; Obayashi
et al., 2009). The resulting weighted HRR network
contained 103,587 edges between 20,785 nodes and
was used as the starting network for the HCCA. As
anticipated, not all the probe sets shared strong corre-
lation with other probe sets, resulting in 2,025 nodes
that were not included in the network (data not
shown). The HRR-based network shared 29,956 edges
and 6,942 nodes with the Pearson-based coexpression
network using r $ 0.8 as cutoff (total of 231,882 edges
and 7,178 nodes).

Designing the HCCA

Genome-scale coexpression networks, like other
networks, consist of nodes and edges that may form
a continuous structure or separate islands of clusters,
depending on what cutoff one uses. While the smaller
structures in such networks may be suitable for visual
inspection, other regions may not be due to the num-
ber of nodes and edges in these regions. To make such
regions more accessible, it is necessary to partition the
network into smaller units, or clusters. Obviously,
such partitioning will lead to a division of network
structures that may, or may not, reflect the “real”
network properties. Most biological networks do not
contain sufficient data to assess whether the divisions
are justifiable or not. However, the flaws in network
divisions may be overcome if the different partitions
can be reassembled into the structures they were
initiated from. We argue that if we can visualize
individual network partitions, or clusters, and put
these into context with other clusters, then the con-

nectivity between the individual clusters may reflect
the larger structures that were partitioned.

Many graph-clustering algorithms do not support
weighted edges and do not yield cluster sizes that
readily allow visual interpretations. In addition, many
graph-clustering algorithms do not allow clustering of
large networks (i.e. networks consisting of several
thousand nodes). Therefore, we developed a novel
graph-clustering algorithm (Fig. 2) referred to as
HCCA. The HCCA algorithm takes step size (n) and
desired cluster size range as parameters. The HCCA
accepts a network as starting point (Fig. 2). For each
node in the network, the algorithm generates node
vicinity networks (NVNs) by collecting all nodes
within n steps away from the seed node. Nodes with
higher connectivity to the outside of the NVN are
iteratively removed. The resulting clusters are then
ranked by outside-to-inside connectivity ratio and
filtered according to desired cluster size range. Non-
overlapping clusters are retained by the algorithm,
and nodes in these clusters are removed from the
network. Nodes associated with rejected clusters are
returned to the network and reevaluated. The HCCA
recursively creates nonoverlapping clusters until no
nodes are left in the network or no more stable clusters
can be obtained (Fig. 2). In the latter case, remaining
nodes are associated with clusters to which they
display the highest connectivity.

Visual Inspection of the Network Solutions

To partition the network, we used the HCCA with
different steps (n) away from the seed node (Fig. 2) and
desired cluster sizes ranging from 40 to 400. For
example, for n = 3, the HCCA generated 181 clusters
that contained approximately 40 to 300 genes per
cluster (Fig. 3A). To assess the biological relevance
of the partitioned network, we initially compared
obtained connections with known biological data
through visual inspection. For example, the secondary
cell wall cellulose synthase genes CESA4, CESA7, and
CESA8 have been used extensively for coexpression
analyses (Brown et al., 2005; Persson et al., 2005; Ma
et al., 2007). In agreement with these analyses, we
obtained genes associated with secondary cell wall
synthesis, including IRX6, IRX8, IRX9, IRX12, and
several transcription factors that recently have been
implicated in secondary cell wall regulation (Zhong
and Ye, 2007), in the network vicinity of the three
CESA genes (Supplemental Fig. S1).

Estimates of Clustering Solutions

A few other graph-clustering algorithms also sup-
port weighted edge graphs, such as the commonly
used MCL (van Dongen, 2000; Enright et al., 2002;
Mentzen andWurtele, 2008). To estimate the quality of
the clustering solution obtained by HCCA, we clus-
tered the HRR network using the MCL algorithm with
a range of different inflation values (Supplemental
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Table S1). In addition, we included clustering solutions
for MCODE (Bader and Hogue, 2003; Prieto et al.,
2008), performed clustering using k-means with dif-
ferent settings (Hartigan and Wong, 1979), and then
compared the results obtained from the HCCA with
the different clustering solutions for the other algo-
rithms (Fig. 3; Supplemental Table S1). We used two
different metrics to evaluate the clustering efficiency:
the commonly used quantity modularity (Newman
and Girvan, 2004), which judges partitions by com-
paring inside-to-outside connectivity ratios, and the
Davies-Bouldin index, which measures the compact-
ness and separation of the obtained clusters (Davies
and Bouldin, 1979). Our HCCA approach yielded
better cluster partitioning compared with the MCL,
k-means, and MCODE in terms of modularity (Fig. 3B;
Supplemental Table S1). In addition, the HCCA solu-
tions were clearly better than all the k-means partitions
in terms of the Davies-Bouldin index (Fig. 3C; Sup-
plemental Table S1). However, the MCL and MCODE
partitions rendered better Davies-Bouldin scores com-
pared with the HCCA (Fig. 3C; Supplemental Table
S1). While the best overall MCL solution was the MCL
1.15 (inflation value 1.15), it is important to point out

that this partition contains cluster sizes in the range of
two to 2,500 genes per cluster (Fig. 3A; Supplemental
Table S2) and therefore is not useful for our purposes.
These results show that the HCCA performed better
than k-means in terms of modularity and Davies-
Bouldin index and scored comparable index numbers
as MCL and MCODE in terms of modularity.

When considering modular networks, it is generally
expected that neighboring nodes fulfill related func-
tions, which also has been recognized in social net-
works (Wasserman and Faust, 1994). Hence, ideally, one
coexpressed gene cluster should contain genes associ-
ated with similar biological functions. Therefore, we
also tested the overlap of MapMan ontology classes
with the clusters generated by the HCCA, MCL,
MCODE, and k-means. We used an approach similar
to ClusterJudge (Gibbons and Roth, 2002), which uses
mutual information between clusters and MapMan
ontology terms to score clustering quality (Steuer
et al., 2006). In brief, this approach scores the overlap
between the ontological terms and the clusters, then
subtracts the mean score obtained for randomly as-
signed clusters, and divides this by the SD of the random
clustering solutions. Therefore, a score of 0 (or even

Figure 2. Schematic work flow of the HCCA (n = 3). The HCCA accepts a network as input. Step 1, Each of the nodes in the
network is used to generate NVNs by taking n steps away from a seed node (indicated as a star). Step 2, Each NVN is then
“chiseled” by recursively removing nodes that have higher connectivity to nodes outside of an NVN than to nodes inside the
NVN. In this example, squared and triangular nodes are removed in the first and second rounds of chiseling, respectively. Step 3,
The chiseling either completely depletes a NVN of nodes or produces a stable putative cluster (SPC). Step 4, Nonoverlapping
SPCs with highest cSPC values are extracted and accepted as clusters. Step 5, Nodes that were accepted as clusters in step 4 are
removed from the network. The remaining network is then transferred to step 1 and rechiseled (steps 2–5).
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negative scores) would indicate random biological cat-
egories and clusters, whereas higher scores (which have
no upper bound) indicate better concordance between
biological categories and clusters. Using this assess-
ment, the HCCA-partitioned networks scored better
than all of the MCL and MCODE partitions and scored
nearly as well as the solutions generated by k-means
(Fig. 3D; Supplemental Table S1). It is important to note
that the latter commonly used algorithm cannot gener-
ate clusters based on graphs but must use the original
expression data, which has an inherent advantage
compared with the HCCA, MCODE, and MCL.

We also investigated how HCCA performs on un-
weighted HRR networks. The HCCA-generated parti-
tions performed slightly better in terms of modularity
and ClusterJudge score and much better in terms of
Davies-Bouldin score compared with the other cluster-
ing algorithms (Supplemental Table S1). However, it is
important to note that the HCCA partitions of un-
weighted networks produced several clusters exceed-

ing the desired maximum cluster size of 400
(Supplemental Table S2). This is most likely due to the
more detailed information retained in the weighted
network. It should be noted that by lowering the cSPC
cutoff value (see Fig. 2 legend), it should still be possible
to generate clusters within the desired cluster range
using HCCA. Also, the number of clusters obtained
from the unweighted network was smaller than for the
weighted network (Supplemental Table S2).

Taken together, these tests show that the HCCA
partitions scored better than k-means, MCL, and
MCODE in terms of modularity and Davies-Bouldin
index and outperformed the MCL and MCODE solu-
tions in terms of biologically relevant associations.

Comparisons of Partition Similarities

While the above results show that HCCA generated
cluster solutions that are as good as, or better than,MCL,
MCODE, and k-means, the HCCA also produced clus-

Figure 3. Cluster comparison of HCCA, MCL, k-means, and MCODE. A, Graph displaying the cluster size range (x axis) versus
number of clusters (y axis; observations) for selected HCCA, MCL, k-means, and MCODE partitions of the HRR network (HRR
cutoff = 30). B, Modularity scores for different settings for the HCCA, MCL, k-means, andMCODE algorithms. k-means 100, 200,
and 400 represent desired cluster number parameters for k-means; MCL 1.15, 1.5, and 2.0 represent different inflation degrees
for the MCL; HCCA n = 2, 3, and 4 represent different step size (n) as described in Figure 2; MCODE (A, B, C, and D) represent
degree cutoff, node score cutoff, k-core, and maximum depth, respectively. High modularity values represent better clustering.
C, Davies-Bouldin score, or index, for different settings for the HCCA, MCL, k-means, and MCODE. The settings are in
accordance with B. Low Davies-Bouldin score represents better clustering. D, ClusterJudge scores of the clustering generated by
HCCA, MCL, k-means, and MCODE, respectively. The settings are in accordance with B. High ClusterJudge score represents
better clustering.
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ters with relative uniform size (Fig. 3A; Supplemental
Table S2) and therefore is well suited for cluster visual-
ization for manual inspection. In contrast, the best
performing MCL partitions resulted in cluster sizes
between two and 2,500 genes (Fig. 3A; Supplemental
Table S2), which is in good agreement with what has
recently been reported (Mentzen and Wurtele, 2008).
Although the cluster size distribution between the dif-
ferent algorithms varied, we anticipated a relatively
high overlap in cluster content between the different
solutions. Therefore, we compared the overlap of genes
associated with certain clusters for the HCCA, MCL,
MCODE, and k-means solutions by adjusted Rand
indices, which measure similarities between two clus-
tering solutions (Supplemental Table S3; Hubert and
Arabie, 1985). Interestingly, each of the algorithms
appeared to have generated clusters with different con-
tents. For example, comparison of theHCCA (n = 3) and
MCL 1.2 (inflation value = 1.2) solutions resulted in an
adjustedRand index of 0.2495 (identical partitions result
in an index of 1; Supplemental Table S3).However, these
solutions contain different cluster sizes, which influence
the outcome of the adjusted Rand index. Comparing
1,000 k-means-partitioned networks, each featuring 100
cluster centers, with a reference k-means network re-

sulted in an average adjustedRand index of 0.4,which is
considerably lower than the index of 1 for identical
partitions. Therefore, it appears that the seemingly low
average adjustedRand indices for thedifferent solutions
may in fact signify rather good agreement in cluster
contents. The rather low values may be explained by
unequal cluster size distributions and by uncertain
cluster partitioning for some of the genes.

Robustness of Clustering toward Node Removal and
Different HRR Cutoffs

The ATH1 microarray chip contains 22,810 probe
sets covering roughly 80% of the genes in the Arabi-
dopsis genome. This means that approximately 5,000
genes are omitted from the chip and, therefore, from
our analysis. To assess whether omission of such a
number of genes may significantly skew the connec-
tions in the HRR network, we randomly removed
approximately 20% of the genes from our data sets and
reclustered the network using HCCA. We repeated
this 20 times and then assessed whether the clusters
were significantly different by estimating the average
adjusted Rand index. Supplemental Table S3 shows
that the average score for HCCA (n = 3) was 0.3818,

Figure 4. Meta-network of coexpressed gene clusters generated by HCCA (n = 3). A, Nodes in the meta-network, or assembled
cluster-level network, represent clusters generated by HCCA. Edges between any two nodes represent interconnectivity between
the nodes above threshold 0.02 (according to C). B, Enlarged region depicts part of the meta-network presumably associatedwith
photosynthesis. Cluster annotations were inferred by MapMan terms, phenotypic, and expression data (http://aranet.mpimp-
golm.mpg.de/aranet). C, Connectivity cutoff values [c(A,B)] for edges in the meta-network. We used a cutoff of 0.02 for
visualization purposes.
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with only 4% SD. This value is similar to the value
obtained for the comparison of 1,000 k-means cluster-
ing solution using 100 cluster centers. These data show
that the network outline and HCCA clustering are
robust against removal of a significant portion of
randomly selected genes and therefore also should
display biologically meaningful correlations despite
the absence of some genes on the ATH1 chip.

To test how different HRR cutoffs influence the
clustering by HCCA, we calculated adjusted Rand
indices between networks generated using HRR of 10,
20, 30, 40, and 50. Supplemental Table S4 shows that the
adjusted Rand index is relatively high (.0.4) for net-

works generated by similar HRR cutoffs (HRR20 ver-
sus HRR30, HRR30 versus HRR40, and HRR40 versus
HRR50), despite the fact that the networks differ dra-
matically in the number of edges (Supplemental Table
S4). Taken together, these results indicate that clusters
obtained by HCCA are robust against the parameters
used to generate the coexpression networks.

Construction of an Interactive Correlation Network for
the Arabidopsis Genome

To illustrate the usefulness of the network partition
obtained from the HCCA, we implemented an inter-

Figure 5. Features of HCCA (n = 3) gene cluster 59. Nodes in this cluster, or gene-level network, represent genes, while edges
and edge coloration depict the HRR values between any two nodes. Red, yellow, and green node colors depict gene mutants
displaying embryo-lethal, gametophyte-lethal, and other described phenotypes, respectively. Gray nodes represent genes with
no described phenotype.
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Figure 6. Essentiality distribution and mu-
tant phenotypes in the HCCA (n = 3)
partitioned network. A, The graph displays
the relative distribution of essential genes
per any given cluster in the network (HRR
cutoff = 30). Black bars depict clusters
significantly enriched (P # 0.05) for es-
sential genes. B, Distribution of single-
copy genes from 1,000 samplings of 152
random nodes from the HRR network
(black bars). Any given gene was referred
to as being single copy if no close homo-
log was detected (score coverage thresh-
old of 30 and length coverage of the
protein of 70%). The observed 152 essen-
tial, single-copy genes are denoted by the
red line. C, Siliques from a plant hetero-
zygous for mutation in At3g14900 (cluster
137). Red arrows indicate chlorotic em-
bryos. Bar = 3 mm. D, Mutant seedlings
(At1g15510) from cluster 137 exhibiting
pale cotyledons (indicated by arrows).
Bar = 3 mm. E, Chlorotic dwarfed mutant
(At3g57180; indicated by the arrow) from
cluster 21. Bar = 1 cm.
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active coexpression network browser, which we
named AraGenNet (http://aranet.mpimp-golm.mpg.
de/aranet). Since the aim of the visualization scheme
was to reassemble the partitioned HRR network for
manual inspection, the network works on two levels:
on the assembled cluster level (meta-network) and on
the gene level (Figs. 4 and 5). The cluster-level network
(Fig. 4) represents an overview of the interactions
between different partitions, or clusters, and therefore
depicts the coexpressed context for individual clus-
ters. Therefore, we refer to this network as a meta-
network. Any two clusters in the meta-network are
connected if the combined weight of edges between
them is larger than a certain threshold. We set this
linkage threshold, or connectivity score, to 0.02, as this
value produced a connection-rich but readable meta-
network (Fig. 4, A and B). A node in the meta-network
consists of a cluster of coexpressed genes generated
from the HCCA (n = 3; Fig. 5). This gene-level network
becomes visible by clicking on a cluster node in the
meta-network. All connections in the gene-level net-
work are based on HRR and are weighted accordingly
(i.e. HRR below 10, 20, and 30 are color coded green,
orange, and red, respectively; Fig. 5). These visualiza-
tion schemes prove the capability and functionality of
the HCCA clustering approach.

Phenotype and Ontology Mapping onto the Network

Since coexpressed genes often tend to be function-
ally related (DeRisi et al., 1997; Ihmels et al., 2004;
Brown et al., 2005; Persson et al., 2005; Wei et al., 2006),
we anticipated that connected clusters in the meta-
network would share a certain degree of functional
commonalities (Freeman et al., 2007). To assess this, we
analyzed the genes in each cluster for MapMan ontol-
ogy term enrichments. We also mapped phenotypic
data (http://www.arabidopsis.org/) and tissue-
dependent expression profiling for the individual genes.
By combining these analyses, we then attempted to
describe what biological functions are associated with
the individual clusters. For example, mutations in
genes associated with cluster 59 (Fig. 5) often result
in embryo lethality or pale green plants. The dominant
expression profile of genes in this cluster shows high
expression in aerial tissues and low expression in

roots, pollen, and seeds. MapMan ontology analysis
revealed that the most significantly enriched term
is amino acid metabolism (P # 1029). Taken together,
these data suggest that cluster 59 is overrepresented
for genes involved in amino acid metabolism in the
chloroplast and that this function is important for
chloroplast development, photosynthesis, and embryo
development. This conclusion is supported by the fact
that cluster 59 was highly enriched for genes with
plastidic localization (P , 0.001; data not shown).

Prediction and Verification of Essential Genes in

the Network

To expand the visual features of the network, we
color coded the severity of the phenotypic traits using
red (embryo lethality), yellow (gametophyte lethality),
and green (other phenotypes) nodes in the network
(Fig. 5). Interestingly, we observed an uneven distri-
bution of embryo-lethal genes per cluster compared
with genes associated with nonlethal phenotypes (Fig.
6A). For example, the chloroplast-associated clusters
21, 59, and 137 showed strong enrichment for essential
genes (P, 1025; Supplemental Table S5). This suggests
that nodes in clusters associated with certain biological
processes are more essential. For example, of the 111
genes associated with cluster 59, 12 are known to be
essential for embryo development (Fig. 6A; Supple-
mental Table S5). As described above, this cluster may
be associated with amino acid activation in the chlo-
roplast.

We also investigated how the essentiality of a gene is
determined by the number and the distances of its
homologs in the network. Figure 6B shows that embryo-
lethal genes are clearly overrepresented by single-copy
genes (P , 0.001; Supplemental Fig. S2A). Further-
more, essential genes tend to be underrepresented
for genes with family members in the network vicinity
(i.e. in the node vicinity network; P , 0.05; Supple-
mental Fig. S2, B and C). Conversely, nonessential
genes tend to be neighbors to their family members
(P , 0.05; Supplemental Fig. S2, E and F). Taken
together, the probability of essentiality for a given
gene appears to depend not only on the connectivity of
the gene (Fig. 1A) but also on its functional uniqueness
in the network vicinity and on its biological role.

Table I. Characteristics of mutants

Family size and family members in vicinity indicate the size of a gene family as defined by Clusters of
Orthologous Groups of proteins and the number of family members in the gene network vicinity (n = 2),
respectively.

Gene T-DNA Line Phenotype Family Size Family Members in Vicinity

At3g23940 SALK_069706 Gametophyte lethal 0 0
At1g74260 SALK_050980 Gametophyte lethal 0 0
At5g64580 SAIL_74_G12 Embryo lethal 0 0
At3g14900 SALK_123989 Embryo lethal 0 0
At1g15510 SALK_112251 Seedling lethal 182 38
At3g57180 SALK_068713 Pale green, dwarf 0 0

Mutwil et al.

38 Plant Physiol. Vol. 152, 2010



Interestingly, similar results have recently also been
observed in protein-protein interaction studies in
yeast (Zotenko et al., 2008). This study convincingly

showed that essentiality corresponded to gene prod-
ucts that are well connected and that are associated
with certain biological functions.

Figure 7. Network of coexpressed MapMan ontology terms. Nodes in this network represent biological processes as defined by
MapMan ontology terms. Node colors and numbers depict the different MapMan terms (legend at left), while edges represent
significant (P # 0.001) associations between the terms based on coexpression. OPP, Oxidative pentose pathway; PS,
photosynthesis; CHO, carbohydrate.
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To explore the prediction of essentiality, we chose 20
genes associated with clusters that harbor numerous
essential genes (i.e. the connected clusters 21, 59, and
137; Fig. 6A; Supplemental Fig. S3) and that are well
connected to other essential genes in the network. We
ordered T-DNA mutant lines corresponding to these
genes and analyzed them for mutant phenotypes
(Table I). Out of the 20 mutant lines, two resulted in
embryo lethality, one in seedling lethality, two in male
gametophyte lethality, and one in dwarfed pale green
plants (Fig. 6, C–E; Table I). Chlorotic cotyledon phe-
notypes are typically associated with chloroplastic
functions (Flores-Pérez et al., 2008), supporting our
prediction that genes belonging to these clusters (i.e.
21, 59, and 137) are functionally associated with the
chloroplast. These results illustrate how a coherent
and easy-to-navigate data visualization scheme, such
as the AraGenNet, can predict biologically meaningful
relationships. Recently, the pollen-deficient mutant
corresponding to the gene At1g74260 was confirmed
by another study (Berthomé et al., 2008).

Associations of Functional Annotations Using

MapMan Ontology

Although the visualization of coexpressed genes
may give insight into functional gene patterns and
arrangements, an equally relevant quest is to under-
stand how these patterns and arrangements are orga-
nized to fulfill cellular functions. To investigate this,
we explored the notion that coexpressed genes, and
therefore network vicinities, often are functionally
related (Ihmels et al., 2004; Brown et al., 2005; Persson
et al., 2005; Wei et al., 2006). To assess how different
ontological terms are transcriptionally connected, we
used the nonclustered HRR network (HRR cutoff = 30)
and calculated whether certain MapMan ontology
terms were overrepresented in nonoverlapping node
vicinities (NVNs in Fig. 2). We then identified terms
that co-occurred more often than expected by chance
(P # 0.05). These significantly associated terms were
connected, and the resulting ontological network was
visualized as an interactive network browser (Fig. 7;
http://aranet.mpimp-golm.mpg.de/aranet/Mapman_
network). To get a more complete network, we also
retained connections representing parent-child rela-
tionships, which are trivial due to their mutual over-
lap. From this visualization, it became evident that
terms that represent related processes tend to be
connected; for example, photosynthesis-related pro-
cesses (dark green) were connected to plastidial pro-
tein synthesis (light blue) and to “protein assembly
and cofactor ligation,” which comprisesmany proteins
involved in the assembly of the plastidial apparatus
(light blue). Furthermore, the chloroplast cluster (dark
green) is closely associated with genes related to
tetrapyrrole biosynthesis (light green; Fig. 7). These
processes most likely reflect parts of the basal plastid-
ial photosynthetic activity program. Other examples

were mitochondrial processes linked to the tricarbox-
ylic acid cycle as well as polyamine synthesis being
coupled to Arg degradation more than would be
expected by the trivial link of Arg decarboxylase,
which is present in both processes. Also, arabinoga-
lactan proteins were linked to abiotic stress, which is in
line with their up-regulation upon salt stress (Lamport
et al., 2006).

Since biologically relevant associations were con-
firmed in the MapMan ontology network, we also
investigated associations between other biological pro-
cesses, which were previously unrelated MapMan
terms andwhichmight help to generate new functional
insights. Interestingly, plant defensins were connected
to sphingolipid biosynthesis in planta. As often the
mode of action of plant defensins seems to bemediated
by sphingolipids of the attacking pathogen (Thevissen
et al., 2000, 2005; Ramamoorthy et al., 2009), it could be
speculated that plant sphingolipidsmight play a role in
this mechanism as well. Furthermore, it might be
interesting to investigate what caused the link intro-
duced between aromatic amino acid degradation and
starch breakdown (Fig. 7, bottom left corner). Thus, the
combination of coexpressed gene vicinities and ontol-
ogy terms may similarly reveal new associations be-
tween different processes in the cell.

CONCLUSION

We have constructed an interactive correlation net-
work for Arabidopsis using a novel HCCA. The clus-
ter solutions obtained from this clustering algorithm
performed as well as, or better than, the commonly
used clustering algorithms MCL, MCODE, and
k-means.More importantly, by visualizing the portioned
clusters, we could reassemble the network; therefore,
we were able to place the obtained partitions into
larger biological contexts. We predicted that unique,
well-connected genes with certain biological functions
tend to be more essential than other genes and con-
firmed this by mutant analyses. The presented data,
therefore, show that comprehensible visualization of
genome-scale correlation networks may render new
insights into the wiring of biological systems. We
propose that this type of network visualization consti-
tutes an easy-to-navigate framework for biologists to
prioritize genes for functional analyses.

MATERIALS AND METHODS

Microarray Data

All calculations for this work were done using python and java scripts.

Databases for Arabidopsis (Arabidopsis thaliana), yeast, and Escherichia coli use

Affymetrix ATH1 (22,810 probe sets), Affymetrix Yeast Genome S98 (9,335

probe sets), and Affymetrix Ecoli_ASv2 (7,312 probe sets) GeneChips, respec-

tively. Arabidopsis microarray data sets consisting of 1,428 ATH1 microarrays

were obtained from TAIR (http://www.arabidopsis.org/). Separate Arabi-

dopsis tissue atlas data sets containing 121 microarrays, which were used for

plotting the gene expression across Arabidopsis tissues, were generated by the

Mutwil et al.
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AtGenExpress project (Schmid et al., 2005) and were obtained from TAIR. The

data were quality controlled by visual inspection of box plots of raw positive

match data and RMA residuals of RMA-normalized data using the RMA

express program. Cel files showing artifacts on RMA residual plots or visibly

deviating from the majority on the positive match box plots were removed

from further analysis. In addition, we removed experiments representing very

similar transcriptomic snapshots by iteratively discarding microarrays that

displayed Pearson correlation [r(A,B) $ 0.95] to more than three other

microarrays. From these analyses, we retained 351 microarrays, which sub-

sequently were normalized using R package simpleAffy. The 244 E. coli and

789 yeast microarray data sets used to generate Figure 1 were downloaded

fromGene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), RMA

normalized, and quality controlled as for the arrays for Arabidopsis. Names of

the cel files used to construct the Arabidopsis HRR networks are download-

able from the AraGenNet home page.

Phenotypic Data for Arabidopsis

Phenotypic data for Arabidopsis were requested and obtained from TAIR

curators and were divided into essential, gametophyte lethal, and nonlethal

sets. All the expression data, coexpression network, and phenotypic data

presented in this work are downloadable from the AraGenNet home page

(http://aranet.mpimp-golm.mpg.de/aranet).

Construction of Coexpression Networks

Pearson-based coexpression networks were used for the centrality-versus-

essentiality study and for generating log-log plots. These networks were

created using the 351 ATH1 microarrays described above. An edge in the

network represents two genes with Pearson correlation [r(A,B) $ 0.8]. All

subsequent analyses were done on HRR-based networks, including the

visualized interactive coexpression network used on the AraGenNet home

page. The HRR score between genes A and B is calculated according to:

HRRðA;BÞ ¼ maxðrðA;BÞ; rðB;AÞÞ

where r(A,B) is correlation rank of gene B in gene A’s coexpression list. Any

two genes that were present in each other’s top 10, 20, or 30 correlation lists

were connected by green, orange, or red connections, respectively. Edges

representing HRR values of 10, 20, and 30 were assigned weights of 1/5, 1/15,

and 1/25, respectively. Any two clusters in the meta-network were connected

if the connectivity score exceeded 0.02 according to:

where

w

1

5
; green edge

1

15
;orange edge

1

25
; red edge

8>>>>>><
>>>>>>:

We used c(A,B) $ 0.02, which connects clusters A and B, if the average

mutual weights of edges between the two clusters exceed 0.02. The connec-

tivity score can range from 0 (no edges between the clusters) to 1 (all outgoing

connections from cluster A are connected to cluster B and vice versa).

Comparison of a Pearson Correlation Network and a
Graphical Gaussian Network

Our Pearson correlation network (r = 0.8) was compared with data sets

from a recently published Graphical Gaussian (GGM) network (Ma et al.,

2007), and common edges were identified by set comparisons (Supplemental

Fig. S4A). Approximately one-third of the edges in the GGM network

were also present in our network, consistent with a previous compari-

son made between the GGM and a Pearson correlation network (Ma et al.,

2007).

To assess the association of node degree (number of nodes a node is

connected to) with phenotype characteristics (essential or nonessential), a

node degree of genes showing a phenotype versus those not showing any

phenotype was compared. This was done across 20 coexpression networks

generated using Pearson r values ranging from 0.9 to 20.9 (steps of 0.1). The

median node degree of genes showing a phenotype was compared with the

median node degree of genes not showing any phenotype at a given r value

cutoff. Significant differences (Wilcoxon test; P , 0.05) in the median node

degree between these two classes were used to indicate significant differences

between the two classes.

HCCA Clustering Algorithm

The HCCA can be implemented by a pseudocode available from the

AraGenNet home page, and the full source code is available upon request

from the authors. A simplified description of the algorithm is depicted

in Figure 2 and in “Results and Discussion.” Python implementation of

HCCA, together with sample networks, is available from the AraGenNet

home page.

MCL

We used the available C code (http://micans.org/mcl/; van Dongen, 2000)

for MCL calculations. The method simulates randomwalks on the graph, with

the walking probability respecting the weight (i.e. HRR values) of the edges

(HRR value of 10 received weight 1/5, 20 received 1/15, and 30 received

1/25). We used different inflation values, which are the Hadamard power of a

stochastic matrix that gives the probabilities for the random walk. Low

inflations result in slower random walks and vice versa. The inflation

parameter may range from .1 to 5, where small values generate fewer but

larger clusters.

k-Means Clustering

To partition probe sets based on the original data, the expression values for

each probe set were centered, scaled, and then subjected to the k-means

clustering procedure provided by R using the default algorithm of Hartigan

and Wong (1979).

MCODE Clustering

The MCODE plugin for Cytoscape (http://baderlab.org/Software/

MCODE; Bader and Hogue, 2003) calculates the local density of nodes in a

network. Based on this score, a seed node is chosen as a starting point to collect

nodes as long as their scores deviate from the seed node within a certain range.

After clustering, it allows postprocessing single clusters without changing the

rest of the network. Since MCODE has the option to vary six or seven

parameters, we attempted to make the output comparable to the HCCA,MCL,

and k-means cluster solutions; therefore, we emphasized the solutions that

cluster a large portion of nodes (Bader and Hogue, 2003).

Comparison of Clustering Solutions

The clustering solutions were judged bymodularity (Newman and Girvan,

2004), which evaluates the graph partitioning by comparing the sum of edge

weights within clusters with edge weights linking different clusters. This

value is subsequently subtracted by the value that one expects for random

partitions. The obtained modularity score ranges between 21 and 1, where

cðA;BÞ ¼

Swi

iefclusterA0s connections to cluster Bg
Swj

je
�
clusterA0s total outgoing connections

� þ
Swk

kefcluster B0s connections to cluster Ag
Swl

le
�
cluster B0s total outgoing connections

�
2
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1 represents perfect modularity, 0 represents value expected by chance,

and 21 represents a value worse than expected by chance.

The partitions were also evaluated by the Davies-Bouldin (DB) index

(Davies and Bouldin, 1979) using the clusterSim R package. It is defined as:

DB ¼ 1

n
+
n

i¼1

maxi¹j

(
SnðQiÞ þ SnðQjÞ

SðQi;QjÞ

)

with n number of clusters, Sn average distance of all objects from the cluster to

their cluster center, and S(QiQj)distance between two cluster centers. Davies-

Bouldin score can range from 0 to infinity. Values close to 0 are achieved by good

(distant) clustering. However, the value of 0 is gained by just one big cluster.

We used adjusted Rand indices to compare two clustering solutions by

pairwise affiliation of nodes (Hubert and Arabie, 1985).

The scores for biological significance of clusters were calculated using the

approximate mutual information between the clustering and MapMan cate-

gories (Usadel et al., 2006) having at least 10 members. In the case where the

clustering solution did not assign all genes to clusters, only those that could be

assigned were considered. To make the HCCA clustering comparable to

k-means, genes not assigned to any cluster by HCCA were not subjected to

k-means, as these genes are most likely difficult to cluster. From this mutual

information value, the mean mutual information from 1,000 random assign-

ments (denoted by MI) with preserved cluster sizes was subtracted, and the

result was divided by the SD (denoted by s) of these random mutual

information values according to:

S ¼ MIcluster 2MIrandom
srandom

Overrepresentation Analysis

To identify terms that might be associated, we randomly sampled

approximately 700 nonoverlapping NVNs from the whole network and

tested for a significant overrepresentation of MapMan terms within these

clusters using a Fisher exact test (P , 0.05 after Benjamini-Hochberg

correction). This was repeated several times to exclude random effects.

Subsequently, we tested for significant co-occurrence of overrepresented

terms using the Fisher exact test.

Uniqueness-Versus-Essentiality Estimates

To group Arabidopsis genes into gene families, a BLASTCLUST analysis on

Arabidopsis protein sequences obtained from TAIR was performed. Length

coverage threshold of 70% and score coverage thresholdwere used as parameters.

We used random sampling to investigate whether there is correspon-

dence between a gene having essential or nonessential characteristics and

its uniqueness in the genome or node vicinity network. So far, 261 genes

are characterized as being essential (phenotypic data from TAIR), and 152

of these are single-copy genes based on the settings above. To investigate

whether essential genes tend to be single copy, we sampled 261 random

nodes 1,000 times and counted the number of single-copy genes acquired

in each sampling. To investigate whether essential genes that do belong

to a gene family tend to be unique in the network vicinity, we sampled

109 (261 total 2 152 single copy) random nodes 1,000 times. The number

of genes unique or nonunique in the network vicinity was then counted

and represented as a histogram. The same was done for nonessential

genes with characterized nonlethal phenotypes (1,224 total, 422 single copy).

Plant Cultivation and Mutant Analysis

T-DNA knockout lines (Supplemental Table S6) were obtained from the

Nottingham Arabidopsis Stock Centre (Alonso et al., 2003). The seeds were

surface sterilized, sown on plates containing Murashige and Skoog medium

(13 Murashige and Skoog salts, 8 g L21 agar, 13 B5 vitamins, and 10.8 g L21

Suc), and incubated for 48 h at 4�C in the dark. The plates were then incubated

for 7 d at 21�C with a 16-h photoperiod. T-DNA insertions were confirmed

using PCR (Supplemental Table S6). Images of seedlings and siliques were

made using a Leica MZ 16 FA stereomicroscope.

Sequence data from this article can be found in the GenBank/EMBL data

libraries under accession numbers NC_003074.8, NC_003070.9, NC_003076.8,

NC_003074.8, NC_003070.9, and NC_003074.8.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Cluster 20 containing genes involved in second-

ary cell wall cellulose synthesis.

Supplemental Figure S2. Distribution of 1,000 random samplings of

essential and nonessential genes from the mutual rank network.

Supplemental Figure S3. Clusters 21, 59, and 137.

Supplemental Figure S4. Comparison of a Pearson network and a GGM-

generated network.

Supplemental Table S1. ClusterJudge, Modularity, and Davies-Bouldin

scores for HCCA, k-means, MCL, and MCODE clustering solutions.

Supplemental Table S2. Cluster size distributions for HCCA, k-means,

MCL, and MCODE clustering solutions.

Supplemental Table S3. Adjusted Rand index analysis of clustering

solutions generated by the MCL, k-means, and HCCA algorithms.

Supplemental Table S4. Adjusted Rand index analysis of clustering

solutions generated by HCCA using HRR cutoffs.

Supplemental Table S5. Fisher’s exact test for enrichment of characterized

and essential genes in HCCA n = 3 obtained clusters.

Supplemental Table S6. T-DNA knockout lines and primers used.
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